Show simple item record

Proprotein convertase expression and localization in epidermis: evidence for multiple roles and substrates

dc.contributor.authorPearton, David J.en_US
dc.contributor.authorNirunsuksiri, Wilasen_US
dc.contributor.authorRehemtulla, Alnawazen_US
dc.contributor.authorLewis, S. Patricken_US
dc.contributor.authorPresland, Richard B.en_US
dc.contributor.authorDale, Beverly A.en_US
dc.date.accessioned2010-06-01T22:47:03Z
dc.date.available2010-06-01T22:47:03Z
dc.date.issued2001-06en_US
dc.identifier.citationPearton, David J.; Nirunsuksiri, Wilas; Rehemtulla, Alnawaz; Lewis, S. Patrick; Presland, Richard B.; Dale, Beverly A. (2001). "Proprotein convertase expression and localization in epidermis: evidence for multiple roles and substrates." Experimental Dermatology 10(3): 193-203. <http://hdl.handle.net/2027.42/75749>en_US
dc.identifier.issn0906-6705en_US
dc.identifier.issn1600-0625en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75749
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11380615&dopt=citationen_US
dc.description.abstractSpecific proteolysis plays an important role in the terminal differentiation of keratinocytes in the epidermis and several types of proteases have been implicated in this process. The proprotein convertases (PCs) are a family of Ca 2+ -dependent serine proteases involved in processing and activation of several types of substrates. In this study we examined the expression and some potential substrates of PCs in epidermis. Four PCs are expressed in epidermis: furin, PACE4, PC5/6 and PC7/8. Furin is detected in two forms, either with or without the transmembrane domain, suggesting occurrence of post-translational cleavage to produce a soluble enzyme. In addition the furin active site has differential accessibility in the granular layer of the epidermis relative to the basal layer, whereas antibodies to the transmembrane domain stain both layers. These findings suggest that furin has access to different types of substrates in granular cells as opposed to basal cells. PC7/8, in contrast, is detected throughout the epidermis with antibodies to both the transmembrane and active site and no soluble form observed. A peptide PC inhibitor (dec-RVKR-CMK) inhibits cleavage of Notch-1, a receptor important in cell fate determination that is found throughout the epidermis. Profilaggrin, found in the granular layer, is specifically cleaved by furin and PACE4 in vitro at a site between the amino terminus and the first filaggrin repeat. This work suggests that the PCs play multiple roles during epidermal differentiation.en_US
dc.format.extent263817 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherMunksgaard International Publishersen_US
dc.publisherBlackwell Publishing Ltden_US
dc.rightsMunksgaard 2001en_US
dc.subject.otherEpidermal Differentiationen_US
dc.subject.otherKeratinocytesen_US
dc.subject.otherFurinen_US
dc.subject.otherPACE4en_US
dc.subject.otherPC5/PC6en_US
dc.subject.otherPC7/PC8en_US
dc.subject.otherProfilaggrinen_US
dc.subject.otherNotch-1en_US
dc.titleProprotein convertase expression and localization in epidermis: evidence for multiple roles and substratesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Radiation Oncology, University of Michigan, Ann Arbor, MI;en_US
dc.contributor.affiliationotherDepartments of Oral Biology, Periodontics, Biochemistry, Medicine/Dermatology, University of Washington, Seattle, WA 98195;en_US
dc.contributor.affiliationotherPresent address Dow AgroSciences LLC, Indianapolis, INen_US
dc.identifier.pmid11380615en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75749/1/j.1600-0625.2001.010003193.x.pdf
dc.identifier.doi10.1034/j.1600-0625.2001.010003193.xen_US
dc.identifier.sourceExperimental Dermatologyen_US
dc.identifier.citedreferenceKam E, Resing K A, Lim S K, Dale B A. Identification of rat epidermal profilaggrin phosphatase as a member of the protein phosphatase 2A family. J Cell Sci 1993: 106: 219.en_US
dc.identifier.citedreferenceHart T C, Hart P S, Bowden D W et al. Mutations of the cathepsin C gene are responsible for Papillon–Lefevre syndrome. J Med Genet 1999: 36: 881.en_US
dc.identifier.citedreferenceKim S Y & Bae C D. Calpain inhibitors reduce the cornified cell envelope formation by inhibiting proteolytic processing of transglutaminase 1. Exp Mol Med 1998: 30: 257.en_US
dc.identifier.citedreferenceTanabe H, Kumagai N, Tsukahara T et al. Changes of lysosomal proteinase activities and their expression in rat cultured keratinocytes during differentiation. Biochim Biophys Acta 1991: 1094: 281.en_US
dc.identifier.citedreferenceResing K A, Johnson R S, Walsh K A. Characterization of protease processing sites during conversion of rat profilaggrin to filaggrin. Biochemistry 1993: 32: 10036.en_US
dc.identifier.citedreferenceWatkinson A. Stratum corneum thiol protease (SCTP) a novel cysteine protease of late epidermal differentiation. Arch Dermatol Res 1999: 291: 260.en_US
dc.identifier.citedreferenceHart T C, Hart P S, Michalec M D et al. Haim–Munk syndrome and Papillon–Lefevre syndrome are allelic mutations in cathepsin C. J Med Genet 2000: 37: 88.en_US
dc.identifier.citedreferenceToomes C, James J, Wood A J et al. Loss-of-function mutations in the cathepsin C gene result in periodontal disease and palmoplantar keratosis. Nat Genet 1999: 23: 421.en_US
dc.identifier.citedreferenceCreemers J W, Jackson R S, Hutton J C. Molecular and cellular regulation of prohormone processing. Semin Cell Dev Biol 1998: 9: 3.en_US
dc.identifier.citedreferenceGensberg K, Jan S, Matthews G M. Subtilisin-related serine proteases in the mammalian constitutive secretory pathway. Semin Cell Dev Biol 1998: 9: 11.en_US
dc.identifier.citedreferenceNakayama K. Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J 1997: 327 ( Pt 3 ): 625.en_US
dc.identifier.citedreferenceSeidah N G & Chretien M. Pro-protein convertases of subtilisin/kexin family. Methods Enzymol 1994: 244: 175.en_US
dc.identifier.citedreferenceKrysan D J, Rockwell N C, Fuller R S. Quantitative characterization of furin specificity: Energetics of substrate discrimination using an internally consistent set of hexapeptidyl methylcoumarinamides. J Biol Chem 1999: 274: 23229.en_US
dc.identifier.citedreferenceLogeat F, Bessia C, Brou C et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc Natl Acad Sci USA 1998: 95: 8108.en_US
dc.identifier.citedreferenceLowell S, Jones P, Le Roux I, Dunne J, Watt F M. Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters. Curr Biol 2000: 10: 491.en_US
dc.identifier.citedreferenceSchacke H, Schumann H, Hammami-Hauasli N, Raghunath M, Bruckner-Tuderman L. Two forms of collagen XVII in keratinocytes. A full-length transmembrane protein and a soluble ectodomain. J Biol Chem 1998: 273: 25937.en_US
dc.identifier.citedreferenceBerthet V, Rigot V, Champion S et al. Role of endoproteolytic processing in the adhesive and signalling functions of alphavbeta5 integrin. J Biol Chem 2000: 275: 33308.en_US
dc.identifier.citedreferenceFleckman P, Holbrook K A, Dale B A, Sybert V P. Keratinocytes cultured from subjects with ichthyosis vulgaris are phenotypically abnormal. J Invest Dermatol 1987: 88: 640.en_US
dc.identifier.citedreferenceThompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994: 22: 4673.en_US
dc.identifier.citedreferenceHiggins D G, Thompson J D, Gibson T J. Using CLUSTAL for multiple sequence alignments. Methods Enzymol 1996: 266: 383.en_US
dc.identifier.citedreferenceChomczynski P & Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate- phenol-chloroform extraction. Anal Biochem 1987: 162: 156.en_US
dc.identifier.citedreferenceRehemtulla A, Dorner A J, Kaufman R J. Regulation of PACE propeptide-processing activity: requirement for a post-endoplasmic reticulum compartment and autoproteolytic activation. Proc Natl Acad Sci U S A 1992: 89: 8235.en_US
dc.identifier.citedreferenceRehemtulla A, Barr P J, Rhodes C J, Kaufman R J. PACE4 is a member of the mammalian propeptidase family that has overlapping but not identical substrate specificity to PACE. Biochemistry 1993: 32: 11586.en_US
dc.identifier.citedreferenceAplin A E & Juliano R L. Integrin and cytoskeletal regulation of growth factor signaling to the MAP kinase pathway. J Cell Sci 1999: 112: 695.en_US
dc.identifier.citedreferenceHager B, Bickenbach J R, Fleckman P. Long-term culture of murine epidermal keratinocytes. J Invest Dermatol 1999: 112: 971.en_US
dc.identifier.citedreferenceGarten W, Hallenberger S, Ortmann D et al. Processing of viral glycoproteins by the subtilisin-like endoprotease furin and its inhibition by specific peptidylchloroalkylketones. Biochimie 1994: 76: 217.en_US
dc.identifier.citedreferencePresland R B, Kimball J R, Kautsky M B, Lewis S P, Lo C Y, Dale B A. Evidence for specific proteolytic cleavage of the N-terminal domain of human profilaggrin during epidermal differentiation. J Invest Dermatol 1997: 108: 170.en_US
dc.identifier.citedreferenceRehemtulla A & Kaufman R J. Protein processing within the secretory pathway. Curr Opin Biotechnol 1992: 3: 560.en_US
dc.identifier.citedreferenceNirunsuksiri W, Presland R B, Brumbaugh S G, Dale B A, Fleckman P. Decreased profilaggrin expression in ichthyosis vulgaris is a result of selectively impaired posttranscriptional control. J Biol Chem 1995: 270: 871.en_US
dc.identifier.citedreferenceRand M D, Grimm L M, Artavanis-Tsakonas S et al. Calcium depletion dissociates and activates heterodimeric notch receptors. Mol Cell Biol 2000: 20: 1825.en_US
dc.identifier.citedreferenceDale B A, Resing K A, Presland R B. Keratohyalin granule proteins. In: Leigh I, Lane B, Watt F, eds. The Keratinocyte Handbook. Cambridge.: Cambridge University Press, 1994: 323.en_US
dc.identifier.citedreferenceHaydock P V, Blomquist C, Brumbaugh S, Dale B A, Holbrook K A, Fleckman P. Antisense profilaggrin RNA delays and decreases profilaggrin expression and alters in vitro differentiation of rat epidermal keratinocytes. J Invest Dermatol 1993: 101: 118.en_US
dc.identifier.citedreferenceKonda Y, Yokota H, Kayo T et al. Proprotein-processing endoprotease furin controls the growth and differentiation of gastric surface mucous cells. J Clin Invest 1997: 99: 1842.en_US
dc.identifier.citedreferenceMadison K C, Sando G N, Howard E J et al. Lamellar granule biogenesis: a role for ceramide glucosyltransferase, lysosomal enzyme transport, and the Golgi. J Investig Dermatol Symp Proc 1998: 3: 80.en_US
dc.identifier.citedreferenceElias P M, Cullander C, Mauro T et al. The secretory granular cell: the outermost granular cell as a specialized secretory cell. J Investig Dermatol Symp Proc 1998: 3: 87.en_US
dc.identifier.citedreferenceMadison K C & Howard E J. Ceramides are transported through the Golgi apparatus in human keratinocytes in vitro. J Invest Dermatol 1996: 106: 1030.en_US
dc.identifier.citedreferenceMilner L A & Bigas A. Notch as a mediator of cell fate determination in hematopoiesis: evidence and speculation. Blood 1999: 93: 2431.en_US
dc.identifier.citedreferenceBigas A, Martin D I, Milner L A. Notch1 and Notch2 inhibit myeloid differentiation in response to different cytokines. Mol Cell Biol 1998: 18: 2324.en_US
dc.identifier.citedreferenceMilner L A, Bigas A, Kopan R, Brashem-Stein C, Bernstein I D, Martin D I. Inhibition of granulocytic differentiation by Notch1. Proc Natl Acad Sci U S A 1996: 93: 13014.en_US
dc.identifier.citedreferencePerron M & Harris W A. Determination of vertebrate retinal progenitor cell fate by the Notch pathway and basic helix–loop–helix transcription factors. Cell Mol Life Sci 2000: 57: 215.en_US
dc.identifier.citedreferenceRogister B, Ben-Hur T, Dubois-Dalcq M. From neural stem cells to myelinating oligodendrocytes. Mol Cell Neurosci 1999: 14: 287.en_US
dc.identifier.citedreferenceFavier B, Fliniaux I, Thelu J et al. Localisation of members of the notch system and the differentiation of vibrissa hair follicles: Receptors, ligands, and fringe modulators. Dev Dyn 2000: 218: 426.en_US
dc.identifier.citedreferenceLin M H, Leimeister C, Gessler M, Kopan R. Activation of the Notch pathway in the hair cortex leads to aberrant differentiation of the adjacent hair-shaft layers. Development 2000: 127: 2421.en_US
dc.identifier.citedreferenceThelu J, Viallet J P, Dhouailly D. Differential expression pattern of the three Fringe genes is associated with epidermal differentiation. J Invest Dermatol 1998: 111: 903.en_US
dc.identifier.citedreferenceKayo T, Sawada Y, Suda M et al. Proprotein-processing endoprotease furin controls growth of pancreatic beta-cells. Diabetes 1997: 46: 1296.en_US
dc.identifier.citedreferenceDale B A, Lonsdale-Eccles J D, Holbrook K A. Stratum corneum basic protein: an interfilamentous matrix protein of epidermal keratin. Curr Probl Dermatol 1980: 10: 311.en_US
dc.identifier.citedreferenceIshida-Yamamoto A, Takahashi H, Presland R B, Dale B A, Iizuka H. Translocation of profilaggrin N-terminal domain into keratinocyte nuclei with fragmented DNA in normal human skin and loricrin keratoderma. Lab Invest 1998: 78: 1245.en_US
dc.identifier.citedreferencePresland R B, Bassuk J A, Kimball J R, Dale B A. Characterization of two distinct calcium-binding sites in the amino-terminus of human profilaggrin. J Invest Dermatol 1995: 104: 218.en_US
dc.identifier.citedreferenceThulin C D & Walsh K A. Identification of the amino terminus of human filaggrin using differential LC/MS techniques: implications for profilaggrin processing. Biochemistry 1995: 34: 8687.en_US
dc.identifier.citedreferencePresland R B, Haydock P V, Fleckman P, Nirunsuksiri W, Dale B A. Characterization of the human epidermal profilaggrin gene. Genomic organization and identification of an S-100-like calcium binding domain at the amino terminus. J Biol Chem 1992: 267: 23772.en_US
dc.identifier.citedreferenceMarkova N G, Marekov L N, Chipev C C, Gan S Q, Idler W W, Steinert P M. Profilaggrin is a major epidermal calcium-binding protein. Mol Cell Biol 1993: 13: 613.en_US
dc.identifier.citedreferenceMiyachi Y, Yoshimura N, Suzuki S et al. Biochemical demonstration and immunohistochemical localization of calpain in human skin. J Invest Dermatol 1986: 86: 346.en_US
dc.identifier.citedreferenceSuzuki Y, Nomura J, Koyama J, Horii I. The role of proteases in stratum corneum: involvement in stratum corneum desquamation. Arch Dermatol Res 1994: 286: 249.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.