Show simple item record

Hypocretin-1 causes G protein activation and increases ACh release in rat pons

dc.contributor.authorBernard, Renéen_US
dc.contributor.authorLydic, Ralphen_US
dc.contributor.authorBaghdoyan, Helen A.en_US
dc.date.accessioned2010-06-01T22:47:10Z
dc.date.available2010-06-01T22:47:10Z
dc.date.issued2003-10en_US
dc.identifier.citationBernard, RenÉ; Lydic, Ralph; Baghdoyan, Helen A. (2003). "Hypocretin-1 causes G protein activation and increases ACh release in rat pons." European Journal of Neuroscience 18(7): 1775-1785. <http://hdl.handle.net/2027.42/75751>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75751
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=14622212&dopt=citationen_US
dc.description.abstractThe effects of the arousal-promoting peptide hypocretin on brain stem G protein activation and ACh release were examined using 16 adult Sprague-Dawley rats. In vitro [ 35 S]GTPγS autoradiography was used to test the hypothesis that hypocretin-1-stimulated G protein activation is concentration-dependent and blocked by the hypocretin receptor antagonist SB-334867. Activated G proteins were quantified in dorsal raphe nucleus (DR), locus coeruleus (LC) and pontine reticular nucleus oral part (PnO) and caudal part (PnC). Concentration–response data revealed a significant ( P  < 0.001) effect of hypocretin-1 (2–2000 nm) in all brain regions examined. Maximal increases over control levels of [ 35 S]GTPγS binding were 37% (DR), 58% (LC), 52% (PnO) and 44% (PnC). SB-334867 (2 µm) significantly ( P  < 0.002) blocked hypocretin-1 (200 nm)-stimulated [ 35 S]GTPγS binding in all four nuclei. This is the first autoradiographic demonstration that hypocretin-1 activates G proteins in arousal-related brain stem nuclei as a result of specific receptor interactions. This finding suggests that some hypocretin receptors in brain stem couple to inhibitory G proteins. In vivo microdialysis was used to test the hypothesis that PnO administration of hypocretin-1 increases ACh release in PnO. Dialysis delivery of hypocretin-1 (100 µm) significantly ( P  < 0.002) increased (87%) ACh release. This finding is consistent with the interpretation that one mechanism by which hypocretin promotes arousal is by enhancing cholinergic neurotransmission in the pontine reticular formation.en_US
dc.format.extent361146 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science, Ltden_US
dc.rights© Federation of European Neuroscience Societiesen_US
dc.subject.other[ 35 S]GTPγS Autoradiographyen_US
dc.subject.otherDorsal Raphe Nucleusen_US
dc.subject.otherLocus Coeruleusen_US
dc.subject.otherOrexinen_US
dc.subject.otherREM Sleepen_US
dc.titleHypocretin-1 causes G protein activation and increases ACh release in rat ponsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumAnaesthesiology, University of Michigan, 7433 Medical Sciences Building I, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherPharmacology anden_US
dc.identifier.pmid14622212en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75751/1/j.1460-9568.2003.02905.x.pdf
dc.identifier.doi10.1046/j.1460-9568.2003.02905.xen_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceAngers, S., Salahpour, A. & Bouvier, M. ( 2002 ) Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol., 42, 409 – 435.en_US
dc.identifier.citedreferenceAntunes, V. R., Brailoiu, G. C., Kwok, E. H., Scruggs, P. & Dun, N. J. ( 2001 ) Orexins/hypocretins excite rat sympathetic preganglionic neurons in vivo and in vitro. Am. J. Physiol. Regul. Integr. Comp. Physiol., 281, R1801 – R1807.en_US
dc.identifier.citedreferenceBaghdoyan, H. A. ( 1997 ) Location and quantification of muscarinic receptor subtypes in rat pons: implications for REM sleep generation. Am. J. Physiol., 273, R896 – R904.en_US
dc.identifier.citedreferenceBaghdoyan, H. A., Lydic, R. & Fleegal, M. A. ( 1998 ) M2 muscarinic autoreceptors modulate acetylcholine release in the medial pontine reticular formation. J. Pharmacol. Exp. Ther., 286, 1446 – 1452.en_US
dc.identifier.citedreferenceBernard, R., Lydic, R. & Baghdoyan, H. A. ( 2002a ) Hypocretin-1 activates G proteins in arousal-related brainstem nuclei of rat. Neuroreport, 13, 447 – 450.en_US
dc.identifier.citedreferenceBernard, R., Lydic, R. & Baghdoyan, H. A. ( 2002b ) The hypocretin receptor antagonist SB-334867 blocks hypocretin-1-induced G protein activation in sleep-related nuclei of rat brain stem. Soc. Neurosci. Abstr., 28, 870.4.en_US
dc.identifier.citedreferenceBernard, R., Lydic, R. & Baghdoyan, H. A. ( 2003a ) Hypocretin-1 increases acetylcholine (ACh) release in rat pontine reticular nucleus, oral part (PnO). FASEB J., 17, 390.6.en_US
dc.identifier.citedreferenceBernard, R., Lydic, R. & Baghdoyan, H. A. ( 2003b ) Pertussis toxin (PTX) blocks hypocretin-1-stimulated G protein activation in rat pontine reticular nucleus, oral part (PnO). Soc. Neurosci. Abstr., 29, in press.en_US
dc.identifier.citedreferenceBourgin, P., Escourrou, P., Gaultier, C. & Adrien, J. ( 1995 ) Induction of rapid eye movement sleep by carbachol infusion into the pontine reticular formation in the rat. Neuroreport, 6, 532 – 536.en_US
dc.identifier.citedreferenceBourgin, P., Huitron-Resendiz, S., Spier, A. D., Fabre, V., Morte, B., Criado, J. R., Sutcliffe, J. G., Henriksen, S. J. & de Lecea, L. ( 2000 ) Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J. Neurosci., 20, 7760 – 7765.en_US
dc.identifier.citedreferenceBrady, A. E. & Limbird, L. E. ( 2002 ) G protein-coupled receptor interacting proteins: Emerging roles in localization and signal transduction. Cell. Signal., 14, 297 – 309.en_US
dc.identifier.citedreferenceBrown, R. E., Sergeeva, O., Eriksson, K. S. & Haas, H. L. ( 2001 ) Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat. Neuropharmacology, 40, 457 – 459.en_US
dc.identifier.citedreferenceBurlet, S., Tyler, C. J. & Leonard, C. S. ( 2002 ) Direct and indirect excitation of laterodorsal tegmental neurons by hypocretin/orexin peptides: implications for wakefulness and narcolepsy. J. Neurosci., 22, 2862 – 2872.en_US
dc.identifier.citedreferenceCapece, M. L., Baghdoyan, H. A. & Lydic, R. ( 1998 ) Carbachol stimulates [ 35 S]guanylyl 5′-(γ-thio) triphosphate binding in REM sleep-related brain stem nuclei of rat. J. Neurosci., 18, 3779 – 3785.en_US
dc.identifier.citedreferenceChemelli, R. M., Willie, J. T., Sinton, C. M., Elmquist, J. K., Scammell, T., Lee, C., Richardson, J. A., Williams, S. C., Xiong, Y., Kisanuki, Y., Fitch, T. E., Nakazato, M., Hammer, R. E., Saper, C. B. & Yanagisawa, M. ( 1999 ) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell, 98, 437 – 451.en_US
dc.identifier.citedreferenceDate, Y., Mondal, M. S., Matsukura, S. & Nakazato, M. ( 2000 ) Distribution of orexin-A and orexin-B (hypocretins) in the rat spinal cord. Neurosci. Lett., 288, 87 – 90.en_US
dc.identifier.citedreferenceDavis, S. F., Williams, K. W., Xu, W., Glatzer, N. R. & Smith, B. N. ( 2003 ) Selective enhancement of synaptic inhibition by hypocretin (orexin) in rat vagal motor neurons: implications for autonomic regulation. J. Neurosci., 23, 3844 – 3854.en_US
dc.identifier.citedreferenceDeMarco, G. J., Baghdoyan, H. A. & Lydic, R. ( 2003 ) Differential cholinergic activation of G proteins in rat and mouse brainstem: relevance for sleep and nociception. J. Comp. Neurol., 457, 175 – 184.en_US
dc.identifier.citedreferenceDevi, L. A. ( 2001 ) Heterodimerization of G-protein-coupled receptors: pharmacology, signaling and trafficking. Trends Pharmacol. Sci., 22, 532 – 537.en_US
dc.identifier.citedreferenceDouglas, C. L., Baghdoyan, H. A. & Lydic, R. ( 2001 ) M2 muscarinic autoreceptors modulate acetylcholine release in prefrontal cortex of C57BL/6J mouse. J. Pharmacol. Exp. Ther., 229, 960 – 966.en_US
dc.identifier.citedreferenceDuxon, M. S., Stretton, J., Starr, K., Jones, D. N. C., Holland, V., Riley, G., Jerman, J. C., Brough, S., Smart, D., Johns, A., Chan, W., Porter, R. A. & Upton, N. ( 2001 ) Evidence that orexin-A-evoked grooming in the rat is mediated by orexin-1 (OX 1 ) receptors, with downstream 5-HT 2C receptor involvement. Psychopharmacology, 153, 203 – 209.en_US
dc.identifier.citedreferenceEspaÑa, R. A., Baldo, B. A., Kelley, A. E. & Berridge, C. W. ( 2001 ) Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience, 106, 699 – 715.en_US
dc.identifier.citedreferenceFarfel, Z., Bourne, H. R. & Iiri, T. ( 1999 ) The expanding spectrum of G protein diseases. New Engl. J. Med., 340, 1012 – 1020.en_US
dc.identifier.citedreferenceGerashchenko, D., Kohls, M. D., Greco, M., Waleh, N. S., Salin-Pascual, R., Kilduff, T. S., Lappi, D. A. & Shiromani, P. J. ( 2001 ) Hypocretin-2-saporin lesions of the lateral hypothalamus produce narcoleptic-like sleep behavior in the rat. J. Neurosci., 21, 7273 – 7283.en_US
dc.identifier.citedreferenceGreco, M. A. & Shiromani, P. J. ( 2001 ) Hypocretin receptor protein and mRNA expression in the dorsolateral pons of rats. Brain Res. Mol. Brain Res., 88, 176 – 182.en_US
dc.identifier.citedreferenceHagan, J. J., Leslie, R. A., Patel, S., Evans, M. L., Wattam, T. A., Holmes, S., Benham, C. D., Taylor, S. G., Routledge, C., Hemmati, P., Munton, R. P., Ashmeade, T. E., Shah, A. S., Hatcher, J. P., Hatcher, P. D., Jones, D. N., Smith, M. I., Piper, D. C., Hunter, A. J., Porter, R. A. & Upton, N. ( 1999 ) Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc. Natl Acad. Sci. USA, 96, 10911 – 10916.en_US
dc.identifier.citedreferenceHara, J., Beuckmann, C. T., Nambu, T., Willie, J. T., Chemelli, R. M., Sinton, C. M., Sugiyama, F., Yagami, K., Goto, K., Yanagisawa, M. & Sakurai, T. ( 2001 ) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophasia, and obesity. Neuron, 30, 345 – 354.en_US
dc.identifier.citedreferenceHervieu, G. J., Cluderay, J. E., Harrison, D. C., Roberts, J. C. & Leslie, R. A. ( 2001 ) Gene expression and protein distribution of the orexin-1 receptor in the rat brain and spinal cord. Neuroscience, 103, 777 – 797.en_US
dc.identifier.citedreferenceHoang, Q. V., Bajic, D., Yanagisawa, M., Nakajima, S. & Nakajima, Y. ( 2003 ) Effects of orexin (hypocretin) on GIRK channels. J. Neurophysiol., 90, 695 – 702.en_US
dc.identifier.citedreferenceHorvath, T. L., Peyron, C., Diano, S., Ivanov, A., Aston-Jones, G., Kilduff, T. S. & van Den Pol, A. N. ( 1999 ) Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J. Comp. Neurol., 415, 145 – 159.en_US
dc.identifier.citedreferenceHuang, X. -F., TÖrk, I., Halliday, G. M. & Paxinos, G. ( 1992 ) The dorsal, posterodorsal, and ventral tegmental nuclei: a cyto- and chemoarchitectonic study in the human. J. Comp. Neurol., 318, 117 – 137.en_US
dc.identifier.citedreferenceIshizawa, Y., Ma, H. -C., Dohi, S. & Shimonaka, H. ( 2000 ) Effects of cholinomimetic injection into the brain stem reticular formation on halothane anesthesia and antinociception in rats. J. Pharmacol. Exp. Ther., 293, 845 – 851.en_US
dc.identifier.citedreferenceJasper, H. H. & Tessier, J. ( 1971 ) Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep. Science, 172, 601 – 602.en_US
dc.identifier.citedreferenceJones, B. E. ( 1990 ) Immunohistochemical study of choline acetyltransferase-immunoreactive processes and cells innervating the pontomedullary reticular formation in the rat. J. Comp. Neurol., 295, 485 – 514.en_US
dc.identifier.citedreferenceKaneko, T., Itoh, K., Shigemoto, R. & Mizuno, N. ( 1989 ) Glutamine-like immunoreactivity in the lower brainstem and the cerebellum of the adult rat. Neuroscience, 32, 79 – 98.en_US
dc.identifier.citedreferenceKarteris, E., Randeva, H. S., Grammatopoulos, D. K., Jaffe, R. B. & Hillhouse, E. W. ( 2001 ) Expression and coupling characteristics of the CRH and orexin type 2 receptors in human fetal adrenals. J. Clin. Endocrinol. Metab., 86, 4512 – 4519.en_US
dc.identifier.citedreferenceKeifer, J. C., Baghdoyan, H. A. & Lydic, R. ( 1996 ) Pontine cholinergic mechanisms modulate the cortical EEG spindles of halothane anesthesia. Anesthesiology, 84, 945 – 954.en_US
dc.identifier.citedreferenceKendrick, K. M. ( 1991 ) In Vitro Recovery Measurements of Peptides. Peptide Measurement Product Catalog. CMA/Microdialysis, Stockholm, Sweden.en_US
dc.identifier.citedreferenceKilduff, T. S. & Peyron, C. ( 2000 ) The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends Neurosci., 23, 359 – 365.en_US
dc.identifier.citedreferenceKinney, G. G., Kocsis, B. & Vertes, R. P. ( 1995 ) Injections of muscimol into the median raphe nucleus produce hippocampal theta rhythm in the urethane anesthetized rat. Psychopharmacology, 120, 244 – 248.en_US
dc.identifier.citedreferenceKlamt, J. G. & Prado, W. A. ( 1990 ) Antinociception and behavioral changes induced by carbachol microinjected into identified sites of the rat brain. Brain Res., 549, 9 – 18.en_US
dc.identifier.citedreferenceKodama, T., Takahashi, Y. & Honda, Y. ( 1990 ) Enhancement of acetylcholine release during paradoxical sleep in the dorsal tegmental field of the cat brain stem. Neurosci. Lett., 114, 277 – 282.en_US
dc.identifier.citedreferenceKukkonen, J. P., Holmqvist, T., Ammoun, S. & Åkerman, K. E. ( 2002 ) Functions of the orexinergic/hypocretinergic system. Am. J. Physiol. Cell. Physiol., 283, C1567 – C1591.en_US
dc.identifier.citedreferenceKurkinen, K. M. A., Koistinaho, J. & Laitinen, J. T. ( 1997 ) [γ- 35 S]GTP autoradiography allows region-specific detection of muscarinic receptor-dependent G-protein activation in chick optic tectum. Brain Res., 769, 21 – 28.en_US
dc.identifier.citedreferenceLaitinen, J. T., Asko, U., Raidaru, G. & Miettinen, R. ( 2001 ) [ 35 S]GTPγS autoradiography reveals a wide distribution of G i/o -linked ADP receptors in the nervous system: close similarities with the platelet P2Y ADP receptor. J. Neurochem., 77, 505 – 518.en_US
dc.identifier.citedreferencede Lecea, L., Kilduff, T. S., Peyron, C., Gao, X., Foye, P. E., Danielson, P. E., Fukuhara, C., Battenberg, E. L., Gautvik, V. T., Bartlett, F. S., 2nd, Frankel, W. N., van den Pol, A. N., Bloom, F. E., Gautvik, K. M. & Sutcliffe, J. G. ( 1998 ) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl Acad. Sci. USA, 95, 322 – 327.en_US
dc.identifier.citedreferenceLeonard, T. O. & Lydic, R. ( 1997 ) Pontine nitric oxide modulates acetylcholine release, rapid eye movement sleep generation, and respiratory rate. J. Neurosci., 17, 774 – 785.en_US
dc.identifier.citedreferenceLimbird, L. E. ( 1996 ) Cell Surface Receptors: a Short Course on Theory and Methods, 2nd edn. Martinus-Nijhoff Publishing, Boston.en_US
dc.identifier.citedreferenceLin, L., Faraco, J., Li, R., Kadotani, H., Rogers, W., Lin, X., Qiu, X., de Jong, P. J., Nishino, S. & Mignot, E. ( 1999 ) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell, 98, 365 – 376.en_US
dc.identifier.citedreferenceLund, P. -E., Shariatmadari, R., Uustare, A., Detheux, M., Parmentier, M., Kukkonen, J. P. & Åkerman, K. E. O. ( 2000 ) The orexin OX 1 receptor activates a novel Ca 2+ influx pathway necessary for coupling to phospholipase C. J. Biol. Chem., 275, 30806 – 30812.en_US
dc.identifier.citedreferenceLydic, R. & Baghdoyan, H. A. ( 1993 ) Pedunculopontine stimulation alters respiration and increases ACh release in the pontine reticular formation. Am. J. Physiol., 264, R544 – R554.en_US
dc.identifier.citedreferenceLydic, R., Baghdoyan, H. A. & Lorinc, Z. ( 1991 ) Microdialysis of cat pons reveals enhanced acetylcholine release during state-dependent respiratory depression. Am. J. Physiol., 261, R766 – R770.en_US
dc.identifier.citedreferenceMarcus, J. N., Aschkenasi, C. J., Lee, C. E., Chemelli, R. M., Saper, C. B., Yanagisawa, M. & Elmquist, J. K. ( 2001 ) Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol., 435, 6 – 25.en_US
dc.identifier.citedreferenceMarrosu, F., Portas, C., Mascia, M. S., Casu, M. A., Fa, M., Giagheddu, M., Imperato, A. & Gessa, G. L. ( 1995 ) Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep–wake cycle in freely moving cats. Brain Res., 671, 329 – 332.en_US
dc.identifier.citedreferenceMateri, L. M., Rasmusson, D. D. & Semba, K. ( 2000 ) Inhibition of synaptically evoked cortical acetylcholine release by adenosine: an in vivo microdialysis study in the rat. Neuroscience, 97, 219 – 226.en_US
dc.identifier.citedreferenceMatsuo, K., Kaibara, M., Uezono, Y., Hayashi, H., Taniyama, K. & Nakane, Y. ( 2002 ) Involvement of cholinergic neurons in orexin-induced contraction of guinea pig ileum. Eur. J. Pharmacol., 452, 105 – 109.en_US
dc.identifier.citedreferenceMazzocchi, G., Malendowicz, L. K., Aragona, F., Rebuffat, P., Gottardo, L. & Nussdorfer, G. G. ( 2001 ) Human pheochromocytomas express orexin receptor type 2 gene and display an in vitro secretory response to orexins A and B. J. Clin. Endocrinol. Metab., 86, 4818 – 4821.en_US
dc.identifier.citedreferenceMitani, A., Ito, K., Hallanger, A. E., Wainer, B. H., Kataoka, K. & McCarley, R. W. ( 1988 ) Cholinergic projections from the laterodorsal and pedunculopontine tegmental nuclei to the pontine gigantocellular tegmental field in the cat. Brain Res., 451, 397 – 402.en_US
dc.identifier.citedreferenceMoruzzi, G. ( 1972 ) The sleep–waking cycle. Ergebn. Physiol., 64, 1 – 165.en_US
dc.identifier.citedreferenceNanmoku, T., Isobe, K., Sakurai, T., Yamanaka, A., Takekoshi, K., Kawakami, Y., Ishii, K., Goto, K. & Nakai, T. ( 2000 ) Orexins suppress catecholamine synthesis and secretion in cultured PC12 cells. Biochem. Biophys. Res. Com., 274, 310 – 315.en_US
dc.identifier.citedreferenceNishino, S. & Mignot, E. ( 1997 ) Pharmacological aspects of human and canine narcolepsy. Prog. Neurobiol., 52, 27 – 78.en_US
dc.identifier.citedreferenceNishino, S., Ripley, B., Overeem, S., Lammers, G. J. & Mignot, E. ( 2000 ) Hypocretin (orexin) deficiency in human narcolepsy. Lancet, 355, 39 – 40.en_US
dc.identifier.citedreferenceNishino, S., Ripley, B., Overeem, S., Nevsimalova, S., Lammers, G. J., Vankova, J., Okun, M., Rogers, W., Brooks, S. & Mignot, E. ( 2001 ) Low cerebrospinal fluid hypocretin (orexin) and altered energy homeostasis in human narcolepsy. Ann. Neurol., 50, 381 – 388.en_US
dc.identifier.citedreferencePaxinos, G. & Watson, C. ( 1998 ) The Rat Brain in Stereotaxic Coordinates, 4th edn. Academic Press, New York.en_US
dc.identifier.citedreferencePeyron, C., Faraco, J., Rogers, W., Ripley, B., Overeem, S., Charnay, Y., Nevsimalova, S., Aldrich, M., Reynolds, D., Albin, R., Li, R., Hungs, M., Pedrazzoli, M., Padigaru, M., Kucherlapati, M., Fan, J., Maki, R., Lammers, G. J., Bouras, C., Kucherlapati, R., Nishino, S. & Mignot, E. ( 2000 ) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nature Med., 6, 991 – 997.en_US
dc.identifier.citedreferencePeyron, C., Tighe, D. K., van den Pol, A. N., de Lecea, L., Heller, H. C., Sutcliffe, J. G. & Kilduff, T. S. ( 1998 ) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci., 18, 9996 – 10015.en_US
dc.identifier.citedreferencePiper, D. C., Upton, N., Smith, M. I. & Hunter, A. J. ( 2000 ) The novel brain neuropeptide, orexin-A, modulates the sleep–wake cycle of rats. Eur. J. Neurosci., 12, 726 – 730.en_US
dc.identifier.citedreferencevan den Pol, A. N., Gao, X. B., Obrietan, K., Kilduff, T. S. & Belousov, A. B. ( 1998 ) Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J. Neurosci., 18, 7962 – 7971.en_US
dc.identifier.citedreferenceRandeva, H. S., Karteris, E., Grammatopoulos, D. & Hillhouse, E. W. ( 2001 ) Expression of orexin-A and functional orexin type 2 receptors in the human adult adrenals: implications for adrenal function and energy homeostasis. J. Clin. Endocrinol. Metab., 86, 4808 – 4813.en_US
dc.identifier.citedreferenceRodgers, R. J., Halford, J. C. G., Nunes de Souza, R. L., Canto de Souza, A. L., Piper, D. C., Arch., J. R. S., Upton, N., Porter, R. A., Johns, A. & Blundell, J. E. ( 2001 ) SB-334867, a selective orexin-1 receptor antagonist, enhances behavioral satiety and blocks the hyperphagic effect of orexin-A in rats. Eur. J. Neurosci., 13, 1444 – 1452.en_US
dc.identifier.citedreferenceSakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R. M., Tanaka, H., Williams, S. C., Richardson, J. A., Kozlowski, G. P., Wilson, S., Arch., J. R., Buckingham, R. E., Haynes, A. C., Carr, S. A., Annan, R. S., McNulty, D. E., Liu, W. S., Terrett, J. A., Elshourbagy, N. A., Bergsma, D. J. & Yanagisawa, M. ( 1998 ) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 92, 573 – 585.en_US
dc.identifier.citedreferenceSanchez, R. & Leonard, C. S. ( 1994 ) NMDA receptor-mediated synaptic input to nitric oxide synthase-containing neurons of the guinea pig mesopontine tegmentum in vitro. Neurosci. Lett., 197, 141 – 144.en_US
dc.identifier.citedreferenceScammell, T. E. ( 2003 ) The neurobiology, diagnosis, and treatment of narcolepsy. Ann. Neurol., 53, 154 – 166.en_US
dc.identifier.citedreferenceSemba, K. ( 1993 ) Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat. J. Comp. Neurol., 330, 543 – 556.en_US
dc.identifier.citedreferenceSemba, K. & Fibiger, H. C. ( 1992 ) Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in rat: a retro- and antero-grade transport and immunohistochemical study. J. Comp. Neurol., 323, 387 – 410.en_US
dc.identifier.citedreferenceShiba, T., Ozu, M., Yoshida, Y., Mignot, E. & Nishino, S. ( 2002 ) Hypocretin stimulates [ 35 S]GTPγS binding in hcrtr 2-transfected cell lines and in brain homogenate. Biochem. Biophys. Res. Com., 294, 615 – 620.en_US
dc.identifier.citedreferenceShiromani, P. J., Armstrong, D. M. & Gillin, J. C. ( 1988 ) Cholinergic neurons from the dorsolateral pons project to the medial pons: a WGA-HRP and choline acetyltransferase immunohistochemical study. Neurosci. Lett., 95, 19 – 23.en_US
dc.identifier.citedreferenceSim, L. J., Selley, D. E. & Childers, S. R. ( 1995 ) In vitro autoradiography of receptor-activated G proteins in rat brain by agonist-stimulated guanylyl 5′-[γ-[ 35 S]thio]-triphosphate binding. Proc. Natl Acad. Sci. USA, 92, 7242 – 7246.en_US
dc.identifier.citedreferenceSmart, D., Sabido-David, C., Brough, S. J., Jewitt, F., Johns, A., Porter, R. A. & Jerman, J. C. ( 2001 ) SB-334867-A: the first selective orexin-1 receptor antagonist. Br. J. Pharmacol., 132, 1179 – 1182.en_US
dc.identifier.citedreferenceSoffin, E. M., Evans, M. L., Gill, C. H., Harries, M. H., Benham, C. D. & Davies, C. H. ( 2002 ) SB-334867-A antagonises orexin mediated excitation in the locus coeruleus. J. Neuropharmacol., 42, 127 – 133.en_US
dc.identifier.citedreferenceSÓvÁgÓ, J., Dupuis, D. S. & GulyÁs, B. ( 2001 ) An overview on functional receptor autoradiography using [ 35 S]GTPγS autoradiography. Brain Res. Rev., 38, 148 – 164.en_US
dc.identifier.citedreferenceSteriade, M. ( 1993 ) Cholinergic blockage of network- and intrinsically-generated slow oscillations promotes waking and REM sleep activity patterns in thalamic and cortical neurons. Prog. Brain Res., 98, 345 – 355.en_US
dc.identifier.citedreferenceStevens, D. R., McCarley, R. W. & Greene, R. W. ( 1992 ) Excitatory amino acid-mediated responses and synaptic potentials in medial pontine reticular formation neurons of the rat in vitro. J. Neurosci., 12, 4188 – 4194.en_US
dc.identifier.citedreferenceTaylor, P. & Insel, P. A. ( 1990 ) Molecular basis of pharmacologic selectivity. In Pratt, W. B. & Taylor, P. (eds), Principles of Drug Action: the Basis of Pharmacology. Churchill Livingstone, New York, pp. 1 – 102.en_US
dc.identifier.citedreferenceThannickal, T. C., Moore, R. Y., Nienhuis, R., Ramanathan, L., Gulyani, S., Aldrich, M., Comford, M. & Siegel, J. M. ( 2000 ) Reduced number of hypocretin neurons in human narcolepsy. Neuron, 27, 469 – 474.en_US
dc.identifier.citedreferencevan den Top, M., Nolan, M. F., Lee, K., Richardson, P. J., Buijs, R. M., Davies, C. & Spanswick, D. ( 2003 ) Orexins induce increased excitability and synchronisation of rat sympathetic preganglionic neurones. J. Physiol. (Lond. ), 549, 809 – 821.en_US
dc.identifier.citedreferenceTrivedi, P., Yu, H., MacNeil, D. J., Van der Ploeg, L. H. T. & Guan, X. -M. ( 1998 ) Distribution of orexin receptor mRNA in the rat brain. FEBS Lett., 438, 71 – 75.en_US
dc.identifier.citedreferenceVarga, V., Sik, A., Freund, T. F. & Kocsis, B. ( 2002 ) GABA B receptors in the median raphe nucleus: Distribution and role in the serotonergic control of hippocampal activity. Neuroscience, 109, 119 – 132.en_US
dc.identifier.citedreferenceVazquez, J. & Baghdoyan, H. A. ( 2003 ) Muscarinic and GABA A receptors modulate acetylcholine release in feline basal forebrain. Eur. J. Neurosci., 17, 249 – 259.en_US
dc.identifier.citedreferenceVertes, R. P., Fortin, W. J. & Crane, A. M. ( 1999 ) Projections of the median raphe nucleus in the rat. J. Comp. Neurol., 407, 555 – 582.en_US
dc.identifier.citedreferenceWaeber, C. & Moskowitz, M. A. ( 1997 ) 5-hydroxytryptamine 1A and 5-hydroxytryptamine 1B receptors stimulated [ 35 S]guanosine-5′- O -(3-thio) triphosphate binding to rodent brain sections as visualized by in vitro autoradiography. Mol. Pharmacol., 52, 623 – 631.en_US
dc.identifier.citedreferenceWoolf, N. J. & Butcher, L. L. ( 1989 ) Cholinergic systems in the rat brain. IV. Descending projections of the pontomesencephalic tegmentum. Brain Res. Bull., 23, 519 – 540.en_US
dc.identifier.citedreferenceXi, M. -C., Fung, S. J., Yamuy, J., Morales, F. R. & Chase, M. H. ( 2002 ) Induction of active (REM) sleep by microinjection of hypocretin into the nucleus pontis oralis of the cat. J. Neurophysiol., 87, 2880 – 2888.en_US
dc.identifier.citedreferenceXi, M., Morales, F. R. & Chase, M. H. ( 2001 ) Effects on sleep and wakefulness of the injection of hypocretin-1 (orexin-A) into the laterodorsal tegmental nucleus of the cat. Brain Res., 901, 259 – 264.en_US
dc.identifier.citedreferenceYamamoto, T., Nozaki-Taguchi, N. & Chiba, T. ( 2002 ) Analgesic effect of intrathecally administered orexin-A in the rat formalin test and in the rat hot plate test. Br. J. Pharmacol., 137, 170 – 176.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.