Show simple item record

Novel Nano-OLED Based Probes for Very High Resolution Optical Microscopy.

dc.contributor.authorZhao, Yiyingen_US
dc.date.accessioned2010-08-27T15:08:41Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2010-08-27T15:08:41Z
dc.date.issued2010en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/77725
dc.description.abstractNear-field scanning optical microscopy (NSOM) has been applied in the study of nanomaterials, microelectronics, photonics, plasmonics, cells, and molecules. However, conventional NSOM relies on optically pumped probes, suffering low optical transmission, heating of the tip, and poor reproducibility of probe fabrication, increasing the cost, impeding usability, reducing practical imaging resolution, and limiting NSOM’s utility. In this thesis, I demonstrate a novel probe based on a nanoscale, electrically pumped organic light-emitting device (OLED) formed on the tip of a low-cost, commercially available atomic force microscopy (AFM) probe. I describe the structure, fabrication, and principles of this novel probe’s operation, and discuss its potential to overcome the limitations of conventional NSOM probes. The broader significance of this work in the field of organic optoelectronics is also discussed. Briefly, OLEDs consist of organic thin films sandwiched between two electrodes. Under bias, electrons and holes are injected into the organic layers, leading to radiative recombination. Depositing a small molecular OLED in vacuum onto a pyramid-tipped AFM probe results in a laminar structure that is highly curved at the tip. Simple electrical modeling predicts concentration of electric field and localized electron injection into the organic layers at the tip, improving the local charge balance in an otherwise electronstarved OLED. Utilizing an “inverted” OLED structure (i.e. cathode on the “bottom”), light emission is localized to sub-200 nm sized, green light emitting regions on probe verxxv tices; light output power in the range of 0.1-0.5 nanowatts was observed, comparable to that of typical fiber based NSOM probes but with greater power efficiency. Massive arrays of similar sub-micron OLEDs were also fabricated by depositing onto textured silicon substrates, demonstrating the superior scalability of the probe fabrication process (e.g. relative to pulled glass fibers). The investigation of the effect of non-planar substrate geometry on charge injection, transport and recombination provides broader insights into OLEDs made on rough substrates, general understanding of OLED operation (e.g. filamentary charge conduction) and degradation, and potentially helps to improve technologically important “inverted” OLED structures.en_US
dc.format.extent17968792 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/octet-stream
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectHigh Resolution Optical Microscopyen_US
dc.subjectOrganic Light Emitting Devicesen_US
dc.subjectEffect of Non-planar Substrate Geometry on Optoelectrical Performances of Organic Light Emitting Devicesen_US
dc.subjectModification of Atomic Force Microscopy Probesen_US
dc.subjectNano-scale Light Sourceen_US
dc.titleNovel Nano-OLED Based Probes for Very High Resolution Optical Microscopy.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineMaterials Science and Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberPipe, Kevin Patricken_US
dc.contributor.committeememberShtein, Maxen_US
dc.contributor.committeememberGuo, Lingjieen_US
dc.contributor.committeememberKim, Jinsangen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/77725/1/yiyingz_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.