Show simple item record

Verification and Anomaly Detection for Event-Based Control of Manufacturing Systems.

dc.contributor.authorAllen, Lindsay Victoriaen_US
dc.date.accessioned2011-01-18T16:17:24Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2011-01-18T16:17:24Z
dc.date.issued2010en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/78897
dc.description.abstractMany important systems can be described as discrete event systems, including a manufacturing cell and patient flow in a clinic. Faults often occur in these systems and addressing these faults is important to ensure proper functioning. There are two main ways to address faults. Faults can be prevented from ever occurring, or they can be detected at the time at which they occur. This work develops methods to address faults in event-based systems for which there is no formal, pre-existing model. A primary application is manufacturing systems, where reducing downtime is especially important and pre-existing formal models are not commonly available. There are three main contributions. The first contribution is formalizing input order robustness - inputs occurring in different orders and yielding the same final state and set of outputs - and creating a method for its verification for logic controllers and networks of controllers. Theory is developed for a class of networks of controllers to be verified modularly, reducing the computational complexity. Input order robustness guarantees determinism of the closed-loop system. The second contribution is an anomaly detection solution for event-based systems without a pre-existing formal model. This solution involves model generation, performance assessment, and anomaly detection itself. A new variation of Petri nets was created to model the systems in this solution that incorporates resources in a less restrictive way. The solution detects anomalies and provides information about when the anomaly was first observed to help with debugging. The third contribution is the identification and resolution of five inconsistencies found between typical academic assumptions and industry practice when applying the anomaly detection solution to an industrial system. Resolutions to the inconsistencies included working with industry collaborators to change logic, and developing new algorithms to incorporate into the anomaly detection solution. Through these resolutions, the anomaly detection solution was improved to make it easier to apply to industrial systems. These three contributions for handling faults will help reduce down-time in manufacturing systems, and hence increase productivity and decrease costs.en_US
dc.format.extent2592095 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/octet-stream
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectControl Systemsen_US
dc.subjectManufacturing Systemsen_US
dc.subjectVerificationen_US
dc.subjectFault Detectionen_US
dc.subjectDiscrete Event Systemsen_US
dc.titleVerification and Anomaly Detection for Event-Based Control of Manufacturing Systems.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineElectrical Engineering: Systemsen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberTilbury, Dawn M.en_US
dc.contributor.committeememberJin, Jionghuaen_US
dc.contributor.committeememberLafortune, Stephaneen_US
dc.contributor.committeememberMoyne, James R.en_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbsecondlevelMechanical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78897/1/lzallen_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.