Show simple item record

Inferring Biological Population Membership: An Exploration of the Continuum of Genetic Relationships.

dc.contributor.authorScott, Nicole M.en_US
dc.date.accessioned2011-01-18T16:22:27Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2011-01-18T16:22:27Z
dc.date.issued2010en_US
dc.date.submitted2010en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/78959
dc.description.abstractTo easily collect samples in a genetic study, we use proxies for membership in biological populations. This means we are often placing or assigning individuals on the basis of operational designations - closer relationships being family, while distant relationships being population membership or even more distant relationships- being ancestrally related population relationships. While there is a correlation between genetic variation and the operational designation placed on individuals, the designation does not necessarily define the genetic relationship. Genetic relationships exist in a continuum and mapping the relationships among sample members from the proxy to the genetics is not straightforward. My dissertation examines the genetic relationships from two scales: between individuals in a population and between ancestrally related populations. I first develop a method to examine population membership using just two individuals. The homogeneity method is a statistical test of the null hypothesis that two individuals are unrelated members of the same randomly mating population. This test requires that the pair of individuals be genotyped for a battery of genetic markers, but it does not require information about the pair of individuals or the populations that they might belong to. Potential applications of this test include 1) identifying population stratification in biomedical samples, 2) solving forensic cases from molecular evidence, 3) management of endangered species, and 4) examining human population history. To examine relationships between populations, I investigate the effect of ancestral population relationships on methods designed to assess population structure. I develop a novel method to simulate multiple SNP genotypes from different populations. This method simulates realistic allele frequencies and captures the shared ancestry of populations so that the user can efficiently choose SNPs with a flexible ascertainment. I then simulate individuals from populations representing a divergent and less divergent phylogenetic tree. I use the simulated data in GHM (generalized hierarchical modeling) and STRUCTURE (Bayesian k-means clustering) to compare the true underlying ancestry. In summary, my dissertation research provides novel quantitative tools and analyses that aid in understanding the genetics of biological populations.en_US
dc.format.extent4348625 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/octet-stream
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectInferring Biological Population Membershipen_US
dc.subjectGenetic Relationshipsen_US
dc.titleInferring Biological Population Membership: An Exploration of the Continuum of Genetic Relationships.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineHuman Geneticsen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberLong, Jeffrey C.en_US
dc.contributor.committeememberBurke, David T.en_US
dc.contributor.committeememberRosenberg, Noah A.en_US
dc.contributor.committeememberStewart, William Charlesen_US
dc.contributor.committeememberZoellner, Sebastian K.en_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78959/1/nmscott_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.