Show simple item record

Barrett's esophagus: genetic and cell changes

dc.contributor.authorSouza, Rhonda F.en_US
dc.contributor.authorFreschi, Giancarloen_US
dc.contributor.authorTaddei, Antonioen_US
dc.contributor.authorRingressi, Maria Novellaen_US
dc.contributor.authorBechi, Paoloen_US
dc.contributor.authorCastiglione, Francescaen_US
dc.contributor.authorDegl'Innocenti, Duccio Rossien_US
dc.contributor.authorTriadafilopoulos, Georgeen_US
dc.contributor.authorWang, Jean S.en_US
dc.contributor.authorChang, Andrew C.en_US
dc.contributor.authorBarr, Hughen_US
dc.contributor.authorBajpai, Manishaen_US
dc.contributor.authorDas, Kiron M.en_US
dc.contributor.authorSchneider, Paul M.en_US
dc.contributor.authorKrishnadath, Kausilia K.en_US
dc.contributor.authorMalhotra, Ushaen_US
dc.contributor.authorLynch, John P.en_US
dc.date.accessioned2011-11-10T15:31:56Z
dc.date.available2012-11-02T18:56:32Zen_US
dc.date.issued2011-09en_US
dc.identifier.citationSouza, Rhonda F.; Freschi, Giancarlo; Taddei, Antonio; Ringressi, Maria Novella; Bechi, Paolo; Castiglione, Francesca; Degl'Innocenti, Duccio Rossi; Triadafilopoulos, George; Wang, Jean S.; Chang, Andrew C.; Barr, Hugh; Bajpai, Manisha; Das, Kiron M.; Schneider, Paul M.; Krishnadath, Kausilia K.; Malhotra, Usha; Lynch, John P. (2011). "Barrett's esophagus: genetic and cell changes." Annals of the New York Academy of Sciences 1232(1). <http://hdl.handle.net/2027.42/86844>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86844
dc.publisherBlackwell Publishing Incen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherBarrett's Esophagusen_US
dc.subject.otherIGF‐1R Genotypeen_US
dc.subject.otherIntestinal Metaplasiaen_US
dc.subject.otherHox Genesen_US
dc.subject.otherBileen_US
dc.subject.otherMitogen‐Activated Protein Kinaseen_US
dc.subject.otherAdenocarcinomaen_US
dc.subject.otherP16en_US
dc.subject.otherP53en_US
dc.subject.otherCDKN2Aen_US
dc.subject.otherTP53en_US
dc.subject.otherVillinen_US
dc.subject.otherMAb Das‐1en_US
dc.subject.otherBAR‐T Cellsen_US
dc.subject.otherCDX‐1geneen_US
dc.subject.otherCDX‐2 Geneen_US
dc.subject.otherNF‐κBen_US
dc.subject.otherHedgehog Pathwayen_US
dc.subject.otherBMP‐4en_US
dc.titleBarrett's esophagus: genetic and cell changesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSection of General Thoracic Surgery, University of Michigan Health System, Ann Arbor, Michigan.en_US
dc.contributor.affiliationotherDepartment of Medicine, University of Texas Southwestern Medical Center and the VA North Texas Health Care System, Dallas, Texas.en_US
dc.contributor.affiliationotherDepartment of Medical and Surgical Critical Care–Unit of Surgeryen_US
dc.contributor.affiliationotherDepartment of Medical and Surgical Critical Care–Unit of Human Pathology, University of Florence, Florence, Italy.en_US
dc.contributor.affiliationotherStanford University School of Medicine, Stanford, California.en_US
dc.contributor.affiliationotherDivision of Gastroenterology, Washington University School of Medicine, Saint Louis, Missouri.en_US
dc.contributor.affiliationotherCranfield University, Gloucestershire Royal Hospital, Gloucester, United Kingdom.en_US
dc.contributor.affiliationotherDivision of Gastroenterology, Department of Medicine, University of Medicine & Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey.en_US
dc.contributor.affiliationotherDivision of Visceral and Transplantation Surgery, Department of Surgery, University Hospital Zurich, Zurich, Switzerland.en_US
dc.contributor.affiliationotherDepartment of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands.en_US
dc.contributor.affiliationotherDivision of Hematology/Oncology, University of Pittsburgh Department of Medicine, Pittsburgh, Pennsylvania.en_US
dc.contributor.affiliationotherDepartment of Medicine, Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvaniaen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86844/1/j.1749-6632.2011.06043.x.pdf
dc.identifier.doi10.1111/j.1749-6632.2011.06043.xen_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceRonkainen, J., P. Aro, T. Storskrubb, et al. 2005. Prevalence of Barrett's esophagus in the general population: an endoscopic study. Gastroenterology 129: 1825 – 1831.en_US
dc.identifier.citedreferenceChak, A., H. Ochs‐Balcom, G. Falk, et al. 2006. Familiality in Barrett's esophagus, adenocarcinoma of the esophagus, and adenocarcinoma of the gastresophageal junction Cancer Epidemiol. Biomarkers Prev. 15: 1668 – 1673.en_US
dc.identifier.citedreferenceTrudgill, N.J., K.C. Kapur & S.A. Riley. 1999. Familial clustering of reflux symptoms. Am. J. Gastroenterol. 94: 1172 – 1178.en_US
dc.identifier.citedreferenceMoons, L.M., J.G. Kusters, J.H. Van Delft, et al. 2008. A pro‐inflammatory genotype predisposes to Barrett's esophagus. Carcinogenesis 29: 926 – 931.en_US
dc.identifier.citedreferenceMacdonald, K., G.A. Porter, D.L. Guernsey, et al. 2009. A polymorphic variant of the insulin‐like growth factor type I receptor gene modifies risk of obesity for esophageal adenocarcinoma. Cancer Epidemiol. 33: 37 – 40.en_US
dc.identifier.citedreferenceSouza, R.F., K. Krishnan & S.J. Spechler. 2008. Acid, Bile and CDX: the ABCs of making Barrett's metaplasia. Am. J. Physiol. Gastrointest. Liver Physiol. 295: 211 – 218.en_US
dc.identifier.citedreferenceFitzgerald, R.C. 2006. Molecular basis of Barrett's esophagus and esophageal adenocarcinoma. Gut. 55: 1810 – 1820.en_US
dc.identifier.citedreferenceKazumori, H., S. Ishihara & Y. Kinoshita. 2009. Roles of caudal‐related homeobox gene Cdx1 in esophageal epithelial cells in Barrett's epithelium development. Gut. 58: 620 – 628.en_US
dc.identifier.citedreferencePeters, J.H. & N. Avisar 2010. The molecular pathogenesis of Barrett's esophagus: common signaling pathways in embryogenesis metaplasia and neoplasia. J. Gastroint. Surg. 14 ( Suppl 1 ): S81 – S87.en_US
dc.identifier.citedreferenceVaninetti, N., L. Williams, L. Geldenhuys, et al. 2009. Regulation of CDX2 expression in esophageal adenocarcinoma. Mol. Carcinog. 48: 965 – 974.en_US
dc.identifier.citedreferenceSouza, R.F., K. Shewmake, L.S. Terada & S.J. Spechler. 2002. Acid exposure activates the mitogen‐activated protein kinase pathways in Barrett's esophagus. Gastroenterology 122: 299 – 307.en_US
dc.identifier.citedreferenceFitzgerald, R.C., M.B. Omary, G. Triadafilopoulos. 1996. Dynamic effects of acid on Barrett's esophagus. An  ex vivo  proliferation and differentiation model. J. Clin. Invest. 98: 2120 – 2128.en_US
dc.identifier.citedreferenceSaadi, A., N.B. Shannon, P. Lao‐Sirieix, et al. 2010. Stromal genes discriminate preinvasive from invasive disease, predict outcome, and highlight inflammatory pathways in digestive cancers. Proc. Natl. Acad. Sci. U. S. A. 107: 2177 – 2182.en_US
dc.identifier.citedreferenceLu, S., A.W. Lowe, G. Triadafilopoulos, et al. 2009. Endoscopic evaluation of esophago‐gastro‐jejunostomy in rat model of Barrett's esophagus. Dis. Esophagus. 22: 323 – 330.en_US
dc.identifier.citedreferenceMerlo, L.M., L.S. Wang, J.W. Pepper, et al. 2010. Polyploidy, aneuploidy and the evolution of cancer. Adv. Exp. Med. Biol. 676: 1 – 13.en_US
dc.identifier.citedreferenceLeedham, S.J., S.L. Preston, S.A. Mcdonald, et al. 2008. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett's esophagus. Gut. 57: 1041 – 1048.en_US
dc.identifier.citedreferenceBoonstra, J.J., R. Van Marion, D.G. Beer, et al. 2010. Verification and unmasking of widely used human esophageal adenocarcinoma cell lines. J. Natl. Cancer Inst. 102: 271 – 274.en_US
dc.identifier.citedreferenceJaiswal, K.R., C.P. Morales, L.A. Feagins, et al. 2007. Characterization of telomerase‐ immortalized, non‐neoplastic, human Barrett's cell line (BAR‐T). Dis. Esophagus 20: 256 – 264.en_US
dc.identifier.citedreferencePalanca‐Wessels, M.C., A. Klingelhutz, B.J. Reid, et al. 2003. Extended lifespan of Barrett's esophagus epithelium transduced with the human telomerase catalytic subunit: a useful in vitro model. Carcinogenesis 24: 1183 – 1190.en_US
dc.identifier.citedreferenceMaley, C.C., P.C. Galipeau, J.C. Finley, et al. 2006. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 38: 468 – 473.en_US
dc.identifier.citedreferenceOkawa, T, C.Z. Michaylira, J. Kalabis, et al. 2007. The functional interplay between EGFR overexpression, hTERT activation, and p53 mutation in esophageal epithelial cells with activation of stromal fibroblasts induces tumor development, invasion, and differentiation. Genes. Dev. 21: 2788 – 2803.en_US
dc.identifier.citedreferenceMerlo, L.M., N.A. Shah, X. Li, et al. 2010. A comprehensive survey of clonal diversity measures in Barrett's esophagus as biomarkers of progression to esophageal adenocarcinoma. Cancer Prev. Res. 3: 1388 – 1397.en_US
dc.identifier.citedreferenceMichor, F. & K. Polyak. 2010. The origins and implications of intratumor heterogeneity. Cancer Prev. Res. 3: 1361 – 1364.en_US
dc.identifier.citedreferenceBarbera, M. & R.C. Fitzgerald. 2010. Cellular origin of Barrett's metaplasia and esophageal stem cells. Biochem. Soc. Trans. 38: 370 – 373.en_US
dc.identifier.citedreferenceNowell, P.C. 1976. The clonal evolution of tumor cell populations. Science 194: 238.en_US
dc.identifier.citedreferenceMaley, C.C., P.C. Galipeau, J.C. Finley, et al. 2006. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 38: 468 – 473.en_US
dc.identifier.citedreferenceLeedham, S.J., S.L. Preston, S.A.C. Mcdonald, et al. 2008. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett's esophagus. Gut 57: 1041 – 1048.en_US
dc.identifier.citedreferenceWright, N.A. Migration of the ductular elements of Gut‐associated glands gives clues to the histogenesis of structures associated with responses to acid hypersecretory state: The origins of “gastric metaplasia in the duodenum of specialised mucosa of Barrett's esophagus and pseudopyloric metaplasia. Yale J. Biol. Med. 69: 147 – 153.en_US
dc.identifier.citedreferenceFitzgerald, R.C. 2008. Dissecting out the genetic origins of Barrett's esophagus. Gut 57: 1033 – 1034.en_US
dc.identifier.citedreferenceMaley, C.C., P.C. Galipeau, X. Li, et al. 2004. The combination of genetic instability and clonal expansion predicts progression to esophageal adenocarcinoma. Cancer Res. 64: 7629 – 7633.en_US
dc.identifier.citedreferenceLeedham, S.J., S.L. Preston, S.A.C. Mcdonald, et al. 2008. Individual crypt genetic heterogeneity and origin of metaplastic glandular epithelium in human Barrett’ esophagus. Gut 57: 1041 – 1048.en_US
dc.identifier.citedreferenceCoad, R.A., A.C. Woodman, P.J. Warner, et al. 2005. On the histiogenesis of Barrett's esophagus and its associated squamous islands: a three‐dimensional study of their morphological relationship with native esophageal gland ducts. J. Pathol. 25: 388 – 394.en_US
dc.identifier.citedreferenceJaiswal, K.R., C.P. Morales, L.A. Feagins, et al. 2007. Characterization of telomerase‐ immortalized, non‐neoplastic, human Barrett's cell line (BAR‐T). Dis. Esophagus. 20: 256 – 264.en_US
dc.identifier.citedreferenceMirza, Z.K., K.K. Das, J. Slate, et al. 2003. Gastric intestinal metaplasia as detected by a monoclonal antibody is highly associated with gastric adenocarcinoma. Gut. 52: 807 – 812.en_US
dc.identifier.citedreferenceDas, K.M., I. Prasad, S. Garla & P.S. Amenta. Detection of a shared colon epithelial epitope on Barrett epithelium by a novel monoclonal antibody. Ann. Intern. Med. 120: 753 – 756.en_US
dc.identifier.citedreferenceBajpai, M., J. Liu, X. Geng, et al. 2008. Repeated exposure to acid and bile selectively induces colonic phenotype expression in a heterogeneous Barrett's epithelial cell line. Lab Invest 88: 643 – 651.en_US
dc.identifier.citedreferenceDas, K.M., Y. Kong, M. Bajpai, et al. 2010. Transformation of benign barrett's epithelium by repeated acid and bile exposure over 65 weeks: a novel in‐vitro model. Int. J. Cancer. 22.en_US
dc.identifier.citedreferenceXi, H., S.E. Baldus, U. Warnecke‐Eberz, et al. 2005. High cyclooxygenase‐2 expression following neoadjuvant radiochemotherapy is associated with minor histopathologic response and poor prognosis in esophageal cancer. Clin. Cancer Res. 11: 8341 – 8347.en_US
dc.identifier.citedreferenceLuthra, R, T.T. Wu, M.G. Luthra, et al. 2006. Gene expression profiling of localized esophageal carcinomas: association with pathologic response to preoperative chemoradiation. J. Clin. Oncol. 24: 259 – 267.en_US
dc.identifier.citedreferenceLurje, G., J.M. Leers, A. Pohl, et al. 2010. Genetic variations in angiogenesis pathway genes predict tumor recurrence in localized adenocarcinoma of the esophagus. Ann. Surg. 251: 857 – 864.en_US
dc.identifier.citedreferencePeng, D., E.A. Sheta, S.M. Powell, et al. 2008. Alterations in Barrett's‐related adenocarcinomas: a proteomic approach. Int. J. Cancer 122: 1303 – 1310.en_US
dc.identifier.citedreferencede Godoy, L.M., J.V. Olsen, J. Cox, et al. 2008. Comprehensive mass‐ spectrometry‐based proteome quantification of haploid versus diploid yeast. Nature 455: 1251 – 1254.en_US
dc.identifier.citedreferenceKazumori, H., S. Ishihara, M.A. Rumi, et al. 2006. Bile acids directly augment caudal related homeobox gene Cdx2 expression in oesophageal keratinocytes in Barrett's epithelium. Gut. 55: 16 – 25.en_US
dc.identifier.citedreferenceHuo, X., H.Y. Zhang, X.I. Zhang, et al. Acid and bile salt‐induced CDX2 expression differs in esophageal squamous cells from patients with and without Barrett's esophagus. Gastroenterology 139: 194 – 203 e191.en_US
dc.identifier.citedreferenceKazumori, H., S. Ishihara & Y. Kinoshita. 2009. Roles of caudal‐related homeobox gene Cdx1 in oesophageal epithelial cells in Barrett's epithelium development. Gut. 58: 620 – 628.en_US
dc.identifier.citedreferenceStairs, D.B., H. Nakagawa, A. Klein‐Szanto, et al. 2008. Cdx1 and c‐ Myc foster the initiation of transdifferentiation of the normal esophageal squamous epithelium toward Barrett's esophagus. PLoS One 3: e3534.en_US
dc.identifier.citedreferenceWang, D.H., N.J. Clemons, T. Miyashita, et al. Aberrant epithelial‐ mesenchymal Hedgehog signaling characterizes Barrett's metaplasia. Gastroenterology 138: 1810 – 1822.en_US
dc.identifier.citedreferencevan Baal, J.W., F. Milano, A. Rygiel, et al. 2005. A comparative analysis by SAGE of gene expression profiles of Barrett's esophagus, normal squamous esophagus, and gastric cardia. Gastroenterology 129: 1274 – 1281.en_US
dc.identifier.citedreferenceMilano, F., J.W. Van Baal, N.S. Buttar, et al. 2007. Bone morphogenetic protein 4 expressed in esophagitis induces a columnar phenotype in esophageal squamous cells. Gastroenterology 132: 2412 – 2421.en_US
dc.identifier.citedreferenceJaiswal, K.R., C.P. Morales, L.A. Feagins, et al. 2007. Characterization of telomerase‐immortalized, non‐neoplastic, human Barrett's cell line (BAR‐T) Dis. Esophagus. 20: 256 – 264.en_US
dc.identifier.citedreferenceHong, J., M. Resnick, J. Behar, et al. 2010. Acid‐induced p16 hypermethylation contributes to development of esophageal adenocarcinoma via activation of NADPH oxidase NOX5‐S. Am. J. Physiol. Gastrointest. Liver Physiol. 299: G697 ‐ G706.en_US
dc.identifier.citedreferenceFitzgerald, R.C., M.B. Omary & G. Triadafilopoulos. 1996. Dynamic effects of acid on Barrett's esophagus. An ex vivo proliferation and differentiation model. J. Clin. Invest. 98: 2120 – 2128.en_US
dc.identifier.citedreferenceZhang, H.Y., X. Zhang, K. Hormi‐Carver, et al. 2007. In Non‐neoplastic Barrett's epithelial cells, acid exerts early antiproliferative effects through activation of the Chk2 pathway. Cancer Res. 67: 8580 – 8587.en_US
dc.identifier.citedreferenceDvorakova, K., C.M. Payne, L. Ramsey, et al. 2005. Apoptosis resistance in Barrett's esophagus: ex vivo bioassay of live stressed tissues. Am. J. Gastroenterol. 100: 424 – 431.en_US
dc.identifier.citedreferencePepe, M.S., R. Etzioni, Z. Feng, et al. 2001. Phases of biomarker development for early detection of cancer. J. Natl. Cancer Inst. 93: 1054 – 1061.en_US
dc.identifier.citedreferenceRabinovitch, P.S., G. Longton, P.L. Blount, et al. 2001. Predictors of progression in Barrett's esophagus: baseline flow cytometric variables. Am. J. Gastroenterol. 96: 3071 – 3083.en_US
dc.identifier.citedreferenceReid, B.J., L.J. Prevo, P.C. Agalipeau, et al. 2001. Predictors of progression in Barrett's esophagus II: baseline 17p (p53) loss of heterozygosity identifies a patient subset at increased risk for neoplastic progression. Am. J. Gastroenterol. 96: 2839 – 2848.en_US
dc.identifier.citedreferenceMaley, C.C., P.C. Galipeau, X. Li, et al. 2004. The combination of genetic instability and clonal expansion predicts progression to esophageal adenocarcinoma. Cancer Res. 64: 7629 – 7633.en_US
dc.identifier.citedreferenceStairs, D.B., J. Kong, & J.P. Lynch, Cdx genes, inflammation, and the pathogenesis of intestinal metaplasias, In Molecular Biology of Digestive Organs. K. Kaestner, Ed. In Press, Elsevier.en_US
dc.identifier.citedreferenceHormi‐Carver, K. & R.F. Souza. 2009. Molecular markers and genetics in cancer development. Surg. Oncol. Clin. N. Am. 18: 453 – 467.en_US
dc.identifier.citedreferenceFarnebo, M., V.J. Bykov, & K.G. Wiman. 2010. The p53 tumor suppressor: a master regulator of diverse cellular processes and therapeutic target in cancer. Biochem. Biophys. Res. Commun. 396: 85 – 89.en_US
dc.identifier.citedreferenceHanahan, D. & R.A. Weinberg. 2000. The hallmarks of cancer. Cell 100: 57 – 70.en_US
dc.identifier.citedreferencePrasad, G.A., et al. Predictors of progression in Barrett's esophagus: current knowledge and future directions. Am. J. Gastroenterol. 105: 1490 – 1502.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.