Show simple item record

Genomewide microRNA down‐regulation as a negative feedback mechanism in the early phases of liver regeneration

dc.contributor.authorShu, Jingminen_US
dc.contributor.authorKren, Betsy T.en_US
dc.contributor.authorXia, Zhilianen_US
dc.contributor.authorWong, Phillip Y.‐p.en_US
dc.contributor.authorLi, Lihuaen_US
dc.contributor.authorHanse, Eric A.en_US
dc.contributor.authorMin, Michael X.en_US
dc.contributor.authorLi, Bingshanen_US
dc.contributor.authorAlbrecht, Jeffrey H.en_US
dc.contributor.authorZeng, Yanen_US
dc.contributor.authorSubramanian, Subbayaen_US
dc.contributor.authorSteer, Clifford J.en_US
dc.date.accessioned2011-11-10T15:32:29Z
dc.date.available2012-10-01T18:34:20Zen_US
dc.date.issued2011-08en_US
dc.identifier.citationShu, Jingmin; Kren, Betsy T.; Xia, Zhilian; Wong, Phillip Y.‐p. ; Li, Lihua; Hanse, Eric A.; Min, Michael X.; Li, Bingshan; Albrecht, Jeffrey H.; Zeng, Yan; Subramanian, Subbaya; Steer, Clifford J. (2011). "Genomewide microRNA downâ regulation as a negative feedback mechanism in the early phases of liver regeneration ." Hepatology 54(2): 609-619. <http://hdl.handle.net/2027.42/86868>en_US
dc.identifier.issn0270-9139en_US
dc.identifier.issn1527-3350en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86868
dc.description.abstractThe liver is one of the few organs that have the capacity to regenerate in response to injury. We carried out genomewide microRNA (miRNA) microarray studies during liver regeneration in rats after 70% partial hepatectomy (PH) at early and mid time points to more thoroughly understand their role. At 3, 12, and 18 hours post‐PH ∼40% of the miRNAs tested were up‐regulated. Conversely, at 24 hours post‐PH, ∼70% of miRNAs were down‐regulated. Furthermore, we established that the genomewide down‐regulation of miRNA expression at 24 hours was also correlated with decreased expression of genes, such as Rnasen , Dgcr8 , Dicer , Tarbp2 , and Prkra , associated with miRNA biogenesis. To determine whether a potential negative feedback loop between miRNAs and their regulatory genes exists, 11 candidate miRNAs predicted to target the above‐mentioned genes were examined and found to be up‐regulated at 3 hours post‐PH. Using reporter and functional assays, we determined that expression of these miRNA‐processing genes could be regulated by a subset of miRNAs and that some miRNAs could target multiple miRNA biogenesis genes simultaneously. We also demonstrated that overexpression of these miRNAs inhibited cell proliferation and modulated cell cycle in both Huh‐7 human hepatoma cells and primary rat hepatocytes. From these observations, we postulated that selective up‐regulation of miRNAs in the early phase after PH was involved in the priming and commitment to liver regeneration, whereas the subsequent genomewide down‐regulation of miRNAs was required for efficient recovery of liver cell mass. Conclusion: Our data suggest that miRNA changes are regulated by negative feedback loops between miRNAs and their regulatory genes that may play an important role in the steady‐state regulation of liver regeneration. (H EPATOLOGY 2011;)en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.titleGenomewide microRNA down‐regulation as a negative feedback mechanism in the early phases of liver regenerationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Bioinformatics, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationotherDepartments of Medicine, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MNen_US
dc.contributor.affiliationotherDepartments of Surgery, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MNen_US
dc.contributor.affiliationotherMinneapolis Medical Research Foundation, Minneapolis, MNen_US
dc.contributor.affiliationotherDepartments of Pharmacology, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MNen_US
dc.contributor.affiliationotherDepartments of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MNen_US
dc.contributor.affiliationotherDepartment of Medicine, University of Minnesota Medical School, MMC 36, VFW Cancer Research Center, Room V357, 406 Harvard Street S.E., Minneapolis, MN 55455en_US
dc.identifier.pmid21574170en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86868/1/HEP_24421_sm_suppinfotable.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86868/2/24421_ftp.pdf
dc.identifier.doi10.1002/hep.24421en_US
dc.identifier.sourceHepatologyen_US
dc.identifier.citedreferenceSteer CJ. Liver regeneration. FASEB J 1995; 9: 1396 ‐ 1400.en_US
dc.identifier.citedreferenceGrisham JW. A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver: autoradiography with thymidine‐H 3. Cancer Res 1962; 22: 842 ‐ 849.en_US
dc.identifier.citedreferenceFausto N. Liver regeneration. J Hepatol 2000; 32: 19 ‐ 31.en_US
dc.identifier.citedreferenceTaub R. Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 2004; 5: 836 ‐ 847.en_US
dc.identifier.citedreferenceMichalopoulos GK. Liver regeneration. J Cell Physiol 2007; 213: 286 ‐ 300.en_US
dc.identifier.citedreferenceCai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 2004; 10: 1957 ‐ 1966.en_US
dc.identifier.citedreferenceGregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R. The microprocessor complex mediates the genesis of microRNAs. Nature 2004; 432: 235 ‐ 240.en_US
dc.identifier.citedreferenceBartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215 ‐ 233.en_US
dc.identifier.citedreferenceLu J, Getz G, Miska EA, Alvarez‐Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834 ‐ 838.en_US
dc.identifier.citedreferenceKanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, et al. Dicer‐deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 2005; 19: 489 ‐ 501.en_US
dc.identifier.citedreferenceSood P, Krek A, Zavolan M, Macino G, Rajewsky N. Cell‐type‐specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A 2006; 103: 2746 ‐ 2751.en_US
dc.identifier.citedreferenceKrutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with “antagomirs”. Nature 2005; 438: 685 ‐ 689.en_US
dc.identifier.citedreferenceEsau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. miR‐122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3: 87 ‐ 98.en_US
dc.identifier.citedreferenceChang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA, et al. miR‐122, a mammalian liver‐specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT‐1. RNA Biol 2004; 1: 106 ‐ 113.en_US
dc.identifier.citedreferenceSong KH, Li T, Owsley E, Chiang JY. A putative role of microRNA in regulation of cholesterol 7α‐hydroxylase expression in human hepatocytes. J Lipid Res 2010; 51: 2223 ‐ 2233.en_US
dc.identifier.citedreferenceKutay H, Bai S, Datta J, Motiwala T, Pogribny I, Frankel W, et al. Downregulation of miR‐122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 2006; 99: 671 ‐ 678.en_US
dc.identifier.citedreferenceSekine S, Ogawa R, Ito R, Hiraoka N, McManus MT, Kanai Y, et al. Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis. Gastroenterology 2009; 136: 2304 ‐ 2315.en_US
dc.identifier.citedreferenceMarquez RT, Wendlandt E, Galle CS, Keck K, McCaffrey AP. MicroRNA‐21 is upregulated during the proliferative phase of liver regeneration, targets Pellino‐1, and inhibits NF‐κB signaling. Am J Physiol Gastrointest Liver Physiol 2010; 298: G535 ‐ G541.en_US
dc.identifier.citedreferenceKalscheuer S, Zhang X, Zeng Y, Upadhyaya P. Differential expression of microRNAs in early‐stage neoplastic transformation in the lungs of F344 rats chronically treated with the tobacco carcinogen 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanone. Carcinogenesis 2008; 29: 2394 ‐ 2399.en_US
dc.identifier.citedreferenceKren BT, Wong PY, Shiota A, Zhang X, Zeng Y, Steer CJ. Polysome trafficking of transcripts and microRNAs in regenerating liver after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol 2009; 297: G1181 ‐ G1192.en_US
dc.identifier.citedreferenceBandyopadhyay P, Kren BT, Ma X, Steer CJ. Enhanced gene transfer into HuH‐7 cells and primary rat hepatocytes using targeted liposomes and polyethylenimine. Biotechniques 1998; 25: 282 ‐ 284, 286 ‐ 292.en_US
dc.identifier.citedreferenceHand NJ, Master ZR, Le Lay J, Friedman JR. Hepatic function is preserved in the absence of mature microRNAs. Hepatology 2009; 49: 618 ‐ 626.en_US
dc.identifier.citedreferenceSong G, Sharma AD, Roll GR, Ng R, Lee AY, Blelloch RH, et al. MicroRNAs control hepatocyte proliferation during liver regeneration. Hepatology 2010; 51: 1735 ‐ 1743.en_US
dc.identifier.citedreferenceMaes OC, An J, Sarojini H, Wang E. Murine microRNAs implicated in liver functions and aging process. Mech Ageing Dev 2008; 129: 534 ‐ 541.en_US
dc.identifier.citedreferenceKren BT, Steer CJ. Posttranscriptional regulation of gene expression in liver regeneration: role of mRNA stability. FASEB J 1996; 10: 559 ‐ 573.en_US
dc.identifier.citedreferenceKim TH, Mars WM, Stolz DB, Michalopoulos GK. Expression and activation of pro‐MMP‐2 and pro‐MMP‐9 during rat liver regeneration. Hepatology 2000; 31: 75 ‐ 82.en_US
dc.identifier.citedreferenceCampbell JS, Prichard L, Schaper F, Schmitz J, Stephenson‐Famy A, Rosenfeld ME, et al. Expression of suppressors of cytokine signaling during liver regeneration. J Clin Invest 2001; 107: 1285 ‐ 1292.en_US
dc.identifier.citedreferenceGreenbaum LE, Cressman DE, Haber BA, Taub R. Coexistence of C/EBP α, β, growth‐induced proteins and DNA synthesis in hepatocytes during liver regeneration. Implications for maintenance of the differentiated state during liver growth. J Clin Invest 1995; 96: 1351 ‐ 1365.en_US
dc.identifier.citedreferenceForman JJ, Legesse‐Miller A, Coller HA. A search for conserved sequences in coding regions reveals that the let‐7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A 2008; 105: 14879 ‐ 14884.en_US
dc.identifier.citedreferenceTokumaru S, Suzuki M, Yamada H, Nagino M, Takahashi T. let‐7 regulates Dicer expression and constitutes a negative feedback loop. Carcinogenesis 2008; 29: 2073 ‐ 2077.en_US
dc.identifier.citedreferenceVolinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006; 103: 2257 ‐ 2261.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.