Show simple item record

Aging and gastrointestinal neuromuscular function: insights from within and outside the gut

dc.contributor.authorBitar, Khalil N.en_US
dc.contributor.authorGreenwood‐van Meerveld, B.en_US
dc.contributor.authorSaad, Richard J.en_US
dc.contributor.authorWiley, J. W.en_US
dc.date.accessioned2011-11-10T15:32:31Z
dc.date.available2012-07-12T17:42:24Zen_US
dc.date.issued2011-06en_US
dc.identifier.citationBitar, K.; Greenwood‐van Meerveld, B. ; Saad, R.; Wiley, J. W. (2011). "Aging and gastrointestinal neuromuscular function: insights from within and outside the gut." Neurogastroenterology & Motility 23(6). <http://hdl.handle.net/2027.42/86869>en_US
dc.identifier.issn1350-1925en_US
dc.identifier.issn1365-2982en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86869
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAutonomic Nervous Systemen_US
dc.subject.otherCentral Nervous Systemen_US
dc.subject.otherEnteric Nervous Systemen_US
dc.subject.otherGastrointestinal Motilityen_US
dc.subject.otherGastrointestinal Smooth Muscleen_US
dc.subject.otherSpinal Gangliaen_US
dc.subject.otherVagus Nerveen_US
dc.subject.otherVisceral Sensationen_US
dc.titleAging and gastrointestinal neuromuscular function: insights from within and outside the guten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pediatrics, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Internal Medicine, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumMichigan Clinical Research Unit, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherResearch Administration, VA Medical Center, Oklahoma City, OK, USAen_US
dc.identifier.pmid21320236en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86869/1/j.1365-2982.2011.01678.x.pdf
dc.identifier.doi10.1111/j.1365-2982.2011.01678.xen_US
dc.identifier.sourceNeurogastroenterology & Motilityen_US
dc.identifier.citedreferenceCamilleri M, Cowen T, Koch TR. Enteric Neurodegeneration in ageing. Neurogastroenterol Motil 2008; 20: 418 – 29.en_US
dc.identifier.citedreferenceBitar KN, Patil SB. Aging and gastrointestinal smooth muscle. Mech Ageing Dev 2004; 125: 907 – 10.en_US
dc.identifier.citedreferenceHall K. Effect of aging on gastrointestinal function. In: Halter JB, Ouslander JG, Tinetti ME, Studenski S, High KP, Asthana S, eds. Hazzard’s: Geriatric Medicine & Gerontology, 6th edn. New York, NY: McGraw‐Hill, 2009; 1059 – 64.en_US
dc.identifier.citedreferenceBhutto A, Morley JE. The clinical significance of gastrointestinal changes with aging. Curr Opin Clin Nutr Metab Care 2008; 11: 651 – 60.en_US
dc.identifier.citedreferenceFirth M, Prather CM. Gastrointestinal motility problems in the elderly patient. Gastroenterology 2002; 122: 1688 – 700.en_US
dc.identifier.citedreferenceBardan E, Kern M, Arndorfer RC, Hofmann C, Shaker R. Effect of aging on bolus kinematics during the pharyngeal phase of swallowing. Am J Physiol Gastrointest Liver Physiol 2006; 290: G458 – 65.en_US
dc.identifier.citedreferenceDejaeger E, Pelemans W, Ponette E, Joosten E. Mechanisms involved in postdeglutition retention in the elderly. Dysphagia 1997; 12: 63 – 7.en_US
dc.identifier.citedreferenceKawamura O, Easterling C, Aslam M, Rittmann T, Hofmann C, Shaker R. Laryngo‐upper esophageal sphincter contractile reflex in humans deteriorates with age. Gastroenterology 2004; 127: 57 – 64.en_US
dc.identifier.citedreferenceDavies AE, Kidd D, Stone SP, MacMahon J. Pharyngeal sensation and gag reflex in healthy subjects. Lancet 1995; 345: 487 – 8.en_US
dc.identifier.citedreferenceMorley JE. Anorexia in older patients: its meaning and management. Geriatrics 1990; 45: 65 – 6.en_US
dc.identifier.citedreferenceSalles N. Basic mechanisms of the aging gastrointestinal tract. Dig Dis 2007; 25: 112 – 7.en_US
dc.identifier.citedreferenceO’Mahony D, O’Leary P, Quigley EM. Aging and intestinal motility: a review of factors that affect intestinal motility in the aged. Drugs Aging 2002; 19: 515 – 27.en_US
dc.identifier.citedreferenceGregersen H, Pedersen J, Drewes AM. Deterioration of muscle function in the human esophagus with age. Dig Dis Sci 2008; 53: 3065 – 70.en_US
dc.identifier.citedreferenceAndrews JM, Heddle R, Hebbard GS, Checklin H, Besanko L, Fraser RJ. Age and gender affect likely manometric diagnosis: audit of a tertiary referral hospital clinical esophageal manometry service. J Gastroenterol Hepatol 2009; 24: 125 – 8.en_US
dc.identifier.citedreferenceLee J, Anggiansah A, Anggiansah R, Young A, Wong T, Fox M. Effects of age on the gastroesophageal junction, esophageal motility, and reflux disease. Clin Gastroenterol Hepatol 2007; 5: 1392 – 8.en_US
dc.identifier.citedreferenceMadsen JL, Graff J. Effects of ageing on gastrointestinal motor function. Age Ageing 2004; 33: 154 – 9.en_US
dc.identifier.citedreferenceSaad RJ, Semler JR, Wilding GE, Chey WD. The effects of age on regional and whole gut transit times in healthy adults. Gastroenterol 2010; 138: S – 127 (Abstract).en_US
dc.identifier.citedreferenceShimamoto C, Hirata I, Hiraike Y, Takeuchi N, Nomura T, Katsu K. Evaluation of gastric motor activity in the elderly by electrogastrography and the (13)C‐acetate breath test. Gerontology 2002; 48: 381 – 6.en_US
dc.identifier.citedreferenceOrr WC, Chen CL. Aging and neural control of the GI tract: IV. Clinical and physiological aspects of gastrointestinal motility and aging. Am J Physiol Gastrointest Liver Physiol 2002; 283: G1226 – 31.en_US
dc.identifier.citedreferenceGraff J, Brinch K, Madsen JL. Gastrointestinal mean transit times in young and middle‐aged healthy subjects. Clin Physiol 2001; 21: 253 – 9.en_US
dc.identifier.citedreferenceBouras EP, Tangalos EG. Chronic constipation in the elderly. Gastroenterol Clin North Am 2009; 38: 463 – 80.en_US
dc.identifier.citedreferenceFox JC, Fletcher JG, Zinsmeister AR, Seide B, Riederer SJ, Bharucha AE. Effect of aging on anorectal and pelvic floor functions in females. Dis Colon Rectum 2006; 49: 1726 – 35.en_US
dc.identifier.citedreferencePakkenburg B, Gunderson HJ. Neocortical neuron numbers in human: effect of sex and age. J Comp Neurol 1997; 384: 312 – 20.en_US
dc.identifier.citedreferenceBergman E, Johnson H, Zhang X et al. Neuropeptide and neurotrophin receptor mRNAs in pain sensory neurons of aged rats. J Comp Neurol 1996; 11: 303 – 19.en_US
dc.identifier.citedreferenceWong DF, Wagner HN, Dannals RF et al. Effects of age on dopamine and serotonin receptors measured by positron tomography in the living brain. Science 1984; 226: 1393 – 6.en_US
dc.identifier.citedreferencePhillips RJ, Kieffer EJ, Powley TL. Aging of the myenteric plexus: neuronal loss is specific to cholinergic neurons. Auton Neurosci 2003; 106: 69 – 83.en_US
dc.identifier.citedreferenceKasparek MS, Fatima J, Iqbal CW, Duenes JA, Sarr MG. Age‐related changes in functional NANC innervation with VIP and substance P in the jejunum of Lewis rats. Auton Neurosci 2009; 151: 127 – 34.en_US
dc.identifier.citedreferencePeck CJ, Samsuria SD, Harrington AM, King SK, Hutson JM, Southwell BR. Fall in density, but not number of myenteric neurons and circular muscle nerve fibres in guinea‐pig colon with ageing. Neurogastroenterol Motil 2009; 21: 1075 – 90.en_US
dc.identifier.citedreferenceHanani M, Fellig Y, Udassin R, Freund HR. Age‐related changes in the morphology of the myenteric plexus of the human colon. Auton Neurosci 2004; 113: 71 – 8.en_US
dc.identifier.citedreferenceBernard CE, Gibbons SJ, Gomez‐Pinilla PJ et al. Effect of age on the enteric nervous system of the human colon. Neurogastroenterol Motil 2009; 21: 746 – e46.en_US
dc.identifier.citedreferenceVerdu E, Ceballos D, Vilches JJ et al. Influence of age on periphera nerve function and regeneration. J Peripher Nerv Syst 2000; 5: 191 – 208.en_US
dc.identifier.citedreferenceAbbott RD, Petrovitch H, White LR et al. Frequency of bowel movement and the future risk of Parkinson’s disease. Neurology 2001; 57: 456 – 62.en_US
dc.identifier.citedreferenceLebouvier T, Chaumette T, Paillusson S et al. The second brain and Parkinson’s Disease. Eur J Neurosci 2009; 30: 735 – 41.en_US
dc.identifier.citedreferenceKuo YM, Li Z, Jiao Y et al. Extensive enteric nervous system abnormalities in mice transgenic for artificial chromosomes containing Parkinson disease‐associated alpha‐synuclein gene mutation precede central nervous system changes. Hum Mol Genet 2010; 19: 1633 – 50.en_US
dc.identifier.citedreferenceAnderson G, Noorian AR, Taylor G et al. Loss of enteric dopaminergic neurons and associated changes in colonic motility in an MPTP mouse model of Parkinson’s disease. Exp Neurol 2007; 207: 4 – 12.en_US
dc.identifier.citedreferenceGreen JG, Noorian AR, Srinivasa S. Delayed gastric emptying and enteric nervous system dysfunction in the rotenone model of Parkinson’s disease. Exp Neurol 2009; 218: 154 – 61.en_US
dc.identifier.citedreferenceWang L, Fleming SM, Chesselet M‐F, Tache Y. Abnormal colonic motility in mice overexpressing human wild‐type s‐synuclein. Neuroreport 2008; 19: 873 – 6.en_US
dc.identifier.citedreferencePhillips RJ, Walter GC, Ringer BE, Higgs KM, Powley TL. Alpha‐synuclein immunopositive aggregates in the myenteric plexus of the aging Fischer 344 rat. Exp Neurol 2009; 220: 109 – 19.en_US
dc.identifier.citedreferencePhillips RJ, Walter GC, Wilder SL et al. Alpha‐synuclein‐immunopositive myenteric neurons and vagal preganglionic terminal: autonomic pathway implicated in Parkinson’s disease? Neurosci 2008; 153: 733 – 50.en_US
dc.identifier.citedreferencePhillips RJ, Pairitz JC, Powley TL. Age‐related neuronal loss in the submucosal plexus of the colon of Fischer 344 rats. Neurobiol Aging 2007; 28: 1124 – 37.en_US
dc.identifier.citedreferenceTalley NJ, O’Keefe E, Zinsmeister AR, Melton LJ. Prevalence of gastrointestinal symptoms in the elderly: a population‐based study. Gastroenterol 1992; 102: 895 – 901.en_US
dc.identifier.citedreferenceLasch H, Castel DO, Castel JA. Evidence for diminished visceral pain with aging: studies using graded intraesophageal balloon distension. Am J Physiol 1997; 272: G1 – 3.en_US
dc.identifier.citedreferenceLagier E, Delvaux M, Vellas B et al. Influence of age on rectal tone and sensitivity to distension in healthy subjects. Neurogastroenterol Motil 1999; 11: 101 – 7.en_US
dc.identifier.citedreferenceChakour MC, Gibsni SJ, Bradbeer M, Helme RD. The effect of age on A delta and C‐fiber pain perception. Pain 1996; 64: 143 – 52.en_US
dc.identifier.citedreferenceNiimi K, Takahashi E, Itakur C. Age‐related differences in nociceptive behavior between SAMP6 and SAMR1 strains. Neurosci Lett 2008; 444: 60 – 3.en_US
dc.identifier.citedreferenceMoore AR, Clinch D. Underlying mechanisms of impaired visceral pain perception in older people. J Am Geriatr Soc 2004; 52: 132 – 6.en_US
dc.identifier.citedreferenceGomez‐Pinilla PJ, Gibbons SJ, Sarr MG et al. Changes in interstitial cells of cajal with age in the human stomach and colon. Neurogastroenterol Motil 2011; 23: 36 – 44.en_US
dc.identifier.citedreferencePhillips RJ, Kieffer EJ, Powley TL. Loss of glia and neurons in the myenteric plexus of the aged Fischer 344 rat. Anat Embryol (Berl) 2004; 209: 19 – 30.en_US
dc.identifier.citedreferenceKruger GM, Mosher JT, Bixby S, Joseph N, Iwashita T, Morrison SJ. Neural crest stem cells persist in the adult gut but undergo changes in self‐renewal, neuronal subtype potential, and factor responsivements. Neuron 2002; 35: 657 – 69.en_US
dc.identifier.citedreferenceLiu MT, Kuan YH, Wang J, Hen R, Gershon MD. 5‐HT4 receptor‐mediated neuroprotection and neurogenesis in the enteric nervous system of adult mice. J Neurosci 2009; 29: 9683 – 99.en_US
dc.identifier.citedreferenceSmits GJ, Lefebvre RA. Influence of age on cholinergic and inhibitory nonadrenergic noncholinergic responses in the rat ileum. Eur J Pharmacol 1996; 303: 79 – 86.en_US
dc.identifier.citedreferenceSomara S, Gilmont RR, Martens JR, Bitar KN. Ectopic expression of caveolin‐1 restores physiological contractile response of aged colonic smooth muscle. Am J Physiol Gastrointest Liver Physiol 2007; 293: G240 – 9.en_US
dc.identifier.citedreferenceSomara S, Hecker L, Bitar KN. Age‐related decline in myosin phosphatase‐mediated maintenance of myosin light chain phosphorylation can be restored by phosphorylated Hsp27 in colonic smooth muscle [Abstract]. Neurogastroenterol Motil 2005; 17: 1.en_US
dc.identifier.citedreferenceKitamura‐Sasaka F, Ueda K, Kawai Y. Effects of aging on contraction and Ca 2+ mobilization in smooth muscle cells of the rat coronary artery. Yonago Acta Med 2001; 44: 61 – 8.en_US
dc.identifier.citedreferenceBitar KN. Aging and neural control of the GI tract: V. Aging and gastrointestinal smooth muscle: from signal transduction to contractile proteins. Am J Physiol Gastrointest Liver Physiol 2003; 284: G1 – 7.en_US
dc.identifier.citedreferenceGidalevitz T, Ben‐Zvi A, Ho KH, Brignull HR, Morimoto RI. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 2006; 311: 1471 – 4.en_US
dc.identifier.citedreferenceMorrow G, Battistini S, Zhang P, Tanguay RM. Decreased lifespan in the absence of expression of the mitochondrial small heat shock protein Hsp22 in Drosophila. J Biol Chem 2004; 279: 43382 – 5.en_US
dc.identifier.citedreferenceMorrow G, Samson M, Michaud S, Tanguay RM. Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J 2004; 18: 598 – 9.en_US
dc.identifier.citedreferenceWadhwa R, Ryu J, Gao R et al. Proproliferative functions of Drosophila small mitochondrial heat shock protein 22 in human cells. J Biol Chem 2010; 285: 3833 – 9.en_US
dc.identifier.citedreferenceHsu AL, Murphy CT, Kenyon C. Regulation of aging and age‐related disease by DAF‐16 and heat‐shock factor. Science 2003; 300: 1142 – 5.en_US
dc.identifier.citedreferenceBayes‐Genis A, Conover CA, Schwartz RS. The insulin‐like growth factor axis: a review of atherosclerosis and restenosis. Circ Res 2000; 86: 125 – 30.en_US
dc.identifier.citedreferenceBartke A. Growth hormone, insulin and aging: the benefits of endocrine defects. Exp Gerontol 2011; 46: 108 – 11.en_US
dc.identifier.citedreferenceBerk BC, Alexander RW. Vasoactive effects of growth factors. Biochem Pharmacol 1989; 38: 219 – 25.en_US
dc.identifier.citedreferenceTaya S, Inagaki N, Sengiku H et al. Direct interaction of insulin‐like growth factor‐1 receptor with leukemia‐associated RhoGEF. J Cell Biol 2001; 155: 809 – 20.en_US
dc.identifier.citedreferenceFukata Y, Amano M, Kaibuchi K. Rho‐Rho‐kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non‐muscle cells. Trends Pharmacol Sci 2001; 22: 32 – 9.en_US
dc.identifier.citedreferenceGosens R, Schaafsma D, Grootte‐Bromhaar M et al. Growth factor‐induced contraction of human bronchial smooth muscle is Rho‐kinase‐dependent. Eur J Pharmacol 2004; 494: 73 – 6.en_US
dc.identifier.citedreferenceGosens R, Schaafsma D, Meurs H, Zaagsma J, Nelemans SA. Role of Rho‐kinase in maintaining airway smooth muscle contractile phenotype. Eur J Pharmacol 2004; 483: 71 – 8.en_US
dc.identifier.citedreferenceRai P. Oxidation in the nucleotide pool, the DNA damage response and cellular senescence: defective bricks build a defective house. Mutat Res 2010; 703: 71 – 81.en_US
dc.identifier.citedreferencePenner MR, Roth TL, Barnes CA, Sweatt JD. An epigenetic hypothesis of aging‐related cognitive dysfunction. Front Aging Neurosci 2010; 2: 9.en_US
dc.identifier.citedreferenceMunoz‐Najar UM, Sedivy JM. Epigenetic control of aging. Antioxid Redox Signal 2011; 14: 241 – 59.en_US
dc.identifier.citedreferenceVellai T, Takacs‐Vellai K. Regulation of protein turnover by longevity pathways. Adv Exp Med Biol 2010; 694: 69 – 80.en_US
dc.identifier.citedreferenceMammucari C, Rizzuto R. Signaling pathways in mitochondrial dysfunction and aging. Mech Ageing Dev 2010; 131: 536 – 43.en_US
dc.identifier.citedreferenceVellai T. Autophagy genes and ageing. Cell Death Differ 2009; 16: 94 – 102.en_US
dc.identifier.citedreferenceSimonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 2008; 4: 176 – 84.en_US
dc.identifier.citedreferenceVellai T, Takács‐Vellai K, Sass M, Klionsky DJ. The regulation of aging: does autophagy underlie longevity? Trends Cell Biol 2009; 19: 487 – 94.en_US
dc.identifier.citedreferenceSalminen A, Kaarniranta K. SIRT1: regulation of longevity via autophagy. Cell Signal 2009; 21: 1356 – 60.en_US
dc.identifier.citedreferenceHarrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009; 460: 392 – 5.en_US
dc.identifier.citedreferenceSelman C, Tullet JM, Wieser D, Irvine E, Lingard SJ et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 2009; 326: 140 – 4.en_US
dc.identifier.citedreferenceSpilman P, Podlutskaya N, Hart MJ et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid‐beta levels in a mouse model of Alzheimer’s disease. PLoS One 2010; 5: 9979.en_US
dc.identifier.citedreferenceGhosh S, George S, Roy U, Ramachandran D, Kolthur‐Seetharam U. NAD: a master regulator of transcription. Biochim Biophys Acta 2010; 1799: 681 – 93.en_US
dc.identifier.citedreferenceFontana L, Partridge L, Longo VD. Extending healthy life span – from yeast to humans. Science 2010; 328: 321 – 6.en_US
dc.identifier.citedreferencede Sousa FC, Neto MH. Morphometric and quantitative study of the myenteric neurons of the stomach of malnourished aging rats. Nutr Neurosci 2009; 12: 167 – 74.en_US
dc.identifier.citedreferenceKapahi P, Chen D, Rogers AN et al. With TOR, less is more: a key role for the conserved nutrient‐sensing TOR pathway in aging. Cell Metab 2010; 11: 453 – 65.en_US
dc.identifier.citedreferenceHands SL, Proud CG, Wyttenbach A. mTOR’s role in ageing: protein synthesis or autophagy? Aging 2009; 1: 586 – 97.en_US
dc.identifier.citedreferenceRobson LG, Dyall S, Sidloff D, Michael‐Titus AT. Omega‐3 polyunsaturated fatty acids increase the neurite outgrowth of rat sensory neurons throughout development and in aged animals. Neurobiol Aging 2010; 31: 678 – 87.en_US
dc.identifier.citedreferenceYamashita T, Wu YP, Sandhoff R et al. Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon–glial interactions. Proc Natl Acad Sci USA 2005; 102: 2725 – 30.en_US
dc.identifier.citedreferenceSprenger N, Julita M, Donnicola D, Jann A. Sialic acid feeding aged rats rejuvenates stimulated salivation and subpopulations of colon enteric chemotypes. Glycobiology 2009; 19: 1492 – 502.en_US
dc.identifier.citedreferenceImai S. A possibility of nutriceuticals as an anti‐aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis. Pharmacol Res 2010; 62: 42 – 7.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.