Show simple item record

Tristetraprolin regulates interleukin‐6, which is correlated with tumor progression in patients with head and neck squamous cell carcinoma

dc.contributor.authorVan Tubergen, Elizabethen_US
dc.contributor.authorVander Broek, Roberten_US
dc.contributor.authorLee, Julia S.en_US
dc.contributor.authorWolf, Gregory T.en_US
dc.contributor.authorCarey, Thomasen_US
dc.contributor.authorBradford, Carol R.en_US
dc.contributor.authorPrince, Mark E. P.en_US
dc.contributor.authorKirkwood, Keith L.en_US
dc.contributor.authorD'Silva, Nisha J.en_US
dc.date.accessioned2011-11-10T15:33:49Z
dc.date.available2012-07-12T17:42:24Zen_US
dc.date.issued2011-06-15en_US
dc.identifier.citationVan Tubergen, Elizabeth; Vander Broek, Robert; Lee, Julia; Wolf, Gregory; Carey, Thomas; Bradford, Carol; Prince, Mark; Kirkwood, Keith L.; D'Silva, Nisha J. (2011). "Tristetraprolin regulates interleukin‐6, which is correlated with tumor progression in patients with head and neck squamous cell carcinoma." Cancer 117(12): 2677-2689. <http://hdl.handle.net/2027.42/86915>en_US
dc.identifier.issn0008-543Xen_US
dc.identifier.issn1097-0142en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86915
dc.description.abstractBACKGROUND: Tumor‐derived cytokines play a significant role in the progression of head and neck squamous cell carcinoma (HNSCC). Targeting proteins, such as tristetraprolin (TTP), that regulate multiple inflammatory cytokines may inhibit the progression of HNSCC. However, TTP's role in cancer is poorly understood. The goal of the current study was to determine whether TTP regulates inflammatory cytokines in patients with HNSCC. METHODS: TTP messenger RNA (mRNA) and protein expression were determined by quantitative real‐time–polymerase chain reaction (Q‐RT‐PCR) and Western blot analysis, respectively. mRNA stability and cytokine secretion were evaluated by quantitative RT‐PCR and enzyme‐linked immunoadsorbent assay, respectively, after overexpression or knockdown of TTP in HNSCC. HNSCC tissue microarrays were immunostained for interleukin‐6 (IL‐6) and TTP. RESULTS: TTP expression in HNSCC cell lines was found to be inversely correlated with the secretion of IL‐6, vascular endothelial growth factor (VEGF), and prostaglandin E2 (PGE 2 ) . Knockdown of TTP increased mRNA stability and the secretion of cytokines. Conversely, overexpression of TTP in HNSCC cells led to decreased secretion of IL‐6, VEGF, and PGE 2 . Immunohistochemical staining of tissue microarrays for IL‐6 demonstrated that staining intensity is prognostic for poor disease‐specific survival ( P = .023), tumor recurrence and development of second primary tumors ( P = .014), and poor overall survival ( P = .019). CONCLUSIONS: The results of the current study demonstrated that down‐regulation of TTP in HNSCC enhances mRNA stability and promotes secretion of IL‐6, VEGF, and PGE 2 . Furthermore, high IL‐6 secretion in HNSCC tissue is a biomarker for poor prognosis. In as much as enhanced cytokine secretion is associated with poor prognosis, TTP may be a therapeutic target to reduce multiple cytokines concurrently in patients with HNSCC. Cancer 2011. © 2011 American Cancer Society. Tristetraprolin (TTP), a protein that decreases the stability of messenger RNA (mRNA) of cytokines and proinflammatory factors, is reduced in patients with head and neck squamous cell carcinoma with a corresponding increase in interleukin‐6 (IL‐6), vascular endothelial growth factor, and cyclooxygenase‐2 secretion. One of these tumor‐derived cytokines, IL‐6, is prognostic for poor disease‐specific survival, tumor recurrence, second primary lesions, and poor overall survival.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherCytokinesen_US
dc.subject.otherInterleukin‐6 (IL‐6)en_US
dc.subject.otherVascular Endothelial Growth Factor (VEGF)en_US
dc.subject.otherProstaglandin E2 (PGE2)en_US
dc.subject.otherMessenger RNA (MRNA) Stabilityen_US
dc.titleTristetraprolin regulates interleukin‐6, which is correlated with tumor progression in patients with head and neck squamous cell carcinomaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelOncology and Hematologyen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Otolaryngology, University of Michigan Medical School, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Pathology, University of Michigan Medical School, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Avenue, Rm. 5217, Ann Arbor, MI 48109‐1078en_US
dc.contributor.affiliationotherDepartment of Craniofacial Biology, The Medical University of South Carolina, Charleston, South Carolinaen_US
dc.identifier.pmid21656745en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86915/1/25859_ftp.pdf
dc.identifier.doi10.1002/cncr.25859en_US
dc.identifier.sourceCanceren_US
dc.identifier.citedreferenceAggarwal BB, Gehlot P. Inflammation and cancer: how friendly is the relationship for cancer patients? Curr Opin Pharmacol. 2009; 9: 351 ‐ 369.en_US
dc.identifier.citedreferenceDong G, Loukinova E, Smith CW, Chen Z, Van Waes C. Genes differentially expressed with malignant transformation and metastatic tumor progression of murine squamous cell carcinoma. J Cell Biochem Suppl. 1997; 28‐29: 90 ‐ 100.en_US
dc.identifier.citedreferenceKanazawa T, Nishino H, Hasegawa M, et al. Interleukin‐6 directly influences proliferation and invasion potential of head and neck cancer cells. Eur Arch Otorhinolaryngol. 2007; 264: 815 ‐ 821.en_US
dc.identifier.citedreferenceChen Z, Malhotra PS, Thomas GR, et al. Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer. Clin Cancer Res. 1999; 5: 1369 ‐ 1379.en_US
dc.identifier.citedreferencePries R, Nitsch S, Wollenberg B. Role of cytokines in head and neck squamous cell carcinoma. Expert Rev Anticancer Ther. 2006; 6: 1195 ‐ 1203.en_US
dc.identifier.citedreferencePries R, Wollenberg B. Cytokines in head and neck cancer. Cytokine Growth Factor Rev. 2006; 17: 141 ‐ 146.en_US
dc.identifier.citedreferenceSingh B, Berry JA, Shoher A, Ramakrishnan V, Lucci A. COX‐2 overexpression increases motility and invasion of breast cancer cells. Int J Oncol. 2005; 26: 1393 ‐ 1399.en_US
dc.identifier.citedreferenceTsujii M, Kawano S, DuBois RN. Cyclooxygenase‐2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci U S A. 1997; 94: 3336 ‐ 3340.en_US
dc.identifier.citedreferenceAnderson P. Post‐transcriptional control of cytokine production. Nat Immunol. 2008; 9: 353 ‐ 359.en_US
dc.identifier.citedreferenceAudic Y, Hartley RS. Post‐transcriptional regulation in cancer. Biol Cell. 2004; 96: 479 ‐ 498.en_US
dc.identifier.citedreferenceCarrick DM, Blackshear PJ. Comparative expression of tristetraprolin (TTP) family member transcripts in normal human tissues and cancer cell lines. Arch Biochem Biophys. 2007; 462: 278 ‐ 285.en_US
dc.identifier.citedreferenceBrennan SE, Kuwano Y, Alkharouf N, Blackshear PJ, Gorospe M, Wilson GM. The mRNA‐destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis. Cancer Res. 2009; 69: 5168 ‐ 5176.en_US
dc.identifier.citedreferenceYoung LE, Sanduja S, Bemis‐Standoli K, Pena EA, Price RL, Dixon DA. The mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis. Gastroenterology. 2009; 136: 1669 ‐ 1679.en_US
dc.identifier.citedreferenceParkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2001; 94: 153 ‐ 156.en_US
dc.identifier.citedreferenceRiebe C, Pries R, Kemkers A, Wollenberg B. Increased cytokine secretion in head and neck cancer upon p38 mitogen‐activated protein kinase activation. Int J Mol Med. 2007; 20: 883 ‐ 887.en_US
dc.identifier.citedreferenceNystrom ML, McCulloch D, Weinreb PH, et al. Cyclooxygenase‐2 inhibition suppresses alphavbeta6 integrin‐dependent oral squamous carcinoma invasion. Cancer Res. 2006; 66: 10833 ‐ 10842.en_US
dc.identifier.citedreferencePeters WH, Lacko M, Te Morsche RH, Voogd AC, Oude Ophuis MB, Manni JJ. COX‐2 polymorphisms and the risk for head and neck cancer in white patients. Head Neck. 2009; 31: 938 ‐ 943.en_US
dc.identifier.citedreferenceSappayatosok K, Maneerat Y, Swasdison S, et al. Expression of pro‐inflammatory protein, iNOS, VEGF and COX‐2 in oral squamous cell carcinoma (OSCC), relationship with angiogenesis and their clinico‐pathological correlation. Med Oral Patol Oral Cir Bucal. 2009; 14: E319 ‐ E324.en_US
dc.identifier.citedreferenceKurihara Y, Hatori M, Ando Y, et al. Inhibition of cyclooxygenase‐2 suppresses the invasiveness of oral squamous cell carcinoma cell lines via down‐regulation of matrix metalloproteinase‐2 production and activation. Clin Exp Metastasis. 2009; 26: 425 ‐ 432.en_US
dc.identifier.citedreferenceEgloff AM, Grandis JR. Targeting epidermal growth factor receptor and SRC pathways in head and neck cancer. Semin Oncol. 2008; 35: 286 ‐ 297.en_US
dc.identifier.citedreferencePaul WE. Pleiotropy and redundancy: T cell‐derived lymphokines in the immune response. Cell. 1989; 57: 521 ‐ 524.en_US
dc.identifier.citedreferenceSok JC, Coppelli FM, Thomas SM, et al. Mutant epidermal growth factor receptor (EGFRvIII) contributes to head and neck cancer growth and resistance to EGFR targeting. Clin Cancer Res. 2006; 12: 5064 ‐ 5073.en_US
dc.identifier.citedreferenceMitra RS, Goto M, Lee JS, et al. Rap1GAP promotes invasion via induction of matrix metalloproteinase 9 secretion, which is associated with poor survival in low N‐stage squamous cell carcinoma. Cancer Res. 2008; 68: 3959 ‐ 3969.en_US
dc.identifier.citedreferenceMitra RS, Zhang Z, Henson BS, Kurnit DM, Carey TE, D'Silva NJ. Rap1A and rap1B ras‐family proteins are prominently expressed in the nucleus of squamous carcinomas: nuclear translocation of GTP‐bound active form. Oncogene. 2003; 22: 6243 ‐ 6256.en_US
dc.identifier.citedreferencePark NH, Min BM, Li SL, Huang MZ, Cherick HM, Doniger J. Immortalization of normal human oral keratinocytes with type 16 human papillomavirus. Carcinogenesis. 1991; 12: 1627 ‐ 1631.en_US
dc.identifier.citedreferencePatil CS, Liu M, Zhao W, et al. Targeting mRNA stability arrests inflammatory bone loss. Mol Ther. 2008; 16: 1657 ‐ 1664.en_US
dc.identifier.citedreferenceHenson BS, Neubig RR, Jang I, et al. Galanin receptor 1 has anti‐proliferative effects in oral squamous cell carcinoma. J Biol Chem. 2005; 280: 22564 ‐ 22571.en_US
dc.identifier.citedreferenceGoto M, Mitra RS, Liu M, et al. Rap1 stabilizes beta‐catenin and enhances beta‐catenin‐dependent transcription and invasion in squamous cell carcinoma of the head and neck. Clin Cancer Res. 2010; 16: 65 ‐ 76.en_US
dc.identifier.citedreferenceGillenwater AM, Zhong M, Lotan R. Histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis through both mitochondrial and Fas (Cd95) signaling in head and neck squamous carcinoma cells. Mol Cancer Ther. 2007; 6: 2967 ‐ 2975.en_US
dc.identifier.citedreferenceWolf GT, Urba S, Hazuka M. Induction chemotherapy for organ preservation in advanced squamous cell carcinoma of the oral cavity and oropharynx. Recent Results Cancer Res. 1994; 134: 133 ‐ 143.en_US
dc.identifier.citedreferenceNg DC, Long CS, Bogoyevitch MA. A role for the extracellular signal‐regulated kinase and p38 mitogen‐activated protein kinases in interleukin‐1 beta‐stimulated delayed signal tranducer and activator of transcription 3 activation, atrial natriuretic factor expression, and cardiac myocyte morphology. J Biol Chem. 2001; 276: 29490 ‐ 29498.en_US
dc.identifier.citedreferenceHeidenreich O, Neininger A, Schratt G, et al. MAPKAP kinase 2 phosphorylates serum response factor in vitro and in vivo. J Biol Chem. 1999; 274: 14434 ‐ 14443.en_US
dc.identifier.citedreferenceWinzen R, Kracht M, Ritter B, et al. The p38 MAP kinase pathway signals for cytokine‐induced mRNA stabilization via MAP kinase‐activated protein kinase 2 and an AU‐rich region‐targeted mechanism. EMBO J. 1999; 18: 4969 ‐ 4980.en_US
dc.identifier.citedreferenceBrosens LA, Keller JJ, Pohjola L, et al. Increased expression of cytoplasmic HuR in familial adenomatous polyposis. Cancer Biol Ther. 2008; 7: 424 ‐ 427.en_US
dc.identifier.citedreferenceLevy AP, Levy NS, Goldberg MA. Post‐transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem. 1996; 271: 2746 ‐ 2753.en_US
dc.identifier.citedreferenceHideshima T, Akiyama M, Hayashi T, et al. Targeting p38 MAPK inhibits multiple myeloma cell growth in the bone marrow milieu. Blood. 2003; 101: 703 ‐ 705.en_US
dc.identifier.citedreferenceDruzgal CH, Chen Z, Yeh NT, et al. A pilot study of longitudinal serum cytokine and angiogenesis factor levels as markers of therapeutic response and survival in patients with head and neck squamous cell carcinoma. Head Neck. 2005; 27: 771 ‐ 784.en_US
dc.identifier.citedreferenceGrunstein J, Roberts WG, Mathieu‐Costello O, Hanahan D, Johnson RS. Tumor‐derived expression of vascular endothelial growth factor is a critical factor in tumor expansion and vascular function. Cancer Res. 1999; 59: 1592 ‐ 1598.en_US
dc.identifier.citedreferenceBataille R, Barlogie B, Lu ZY, et al. Biologic effects of anti‐interleukin‐6 murine monoclonal antibody in advanced multiple myeloma. Blood. 1995; 86: 685 ‐ 691.en_US
dc.identifier.citedreferenceSmith PC, Keller ET. Anti‐interleukin‐6 monoclonal antibody induces regression of human prostate cancer xenografts in nude mice. Prostate. 2001; 48: 47 ‐ 53.en_US
dc.identifier.citedreferenceAnderson P. Intrinsic mRNA stability helps compose the inflammatory symphony. Nat Immunol. 2009; 10: 233 ‐ 234.en_US
dc.identifier.citedreferenceStoecklin G, Stoeckle P, Lu M, Muehlemann O, Moroni C. Cellular mutants define a common mRNA degradation pathway targeting cytokine AU‐rich elements. RNA. 2001; 7: 1578 ‐ 1588.en_US
dc.identifier.citedreferenceTaylor GA Carballo E Lee DM et al. A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity. 1996; 4: 445 ‐ 454.en_US
dc.identifier.citedreferenceLee HH Son YJ Lee WH et al. Tristetraprolin regulates expression of VEGF and tumorigenesis in human colon cancer. Int J Cancer. 2010; 126: 1817 ‐ 1827.en_US
dc.identifier.citedreferenceAl‐Souhibani N Al‐Ahmadi W Hesketh JE Blackshear PJ Khabar KS The RNA‐binding zinc‐finger protein tristetraprolin regulates AU‐rich mRNAs involved in breast cancer‐related processes. Oncogene. 2010; 29: 4205 ‐ 4215.en_US
dc.identifier.citedreferenceKeller ET Wanagat J Ershler WB Molecular and cellular biology of interleukin‐6 and its receptor. Front Biosci. 1996; 1: d340 ‐ d357.en_US
dc.identifier.citedreferenceKishimoto T. Interleukin‐6: from basic science to medicine–40 years in immunology. Annu Rev Immunol. 2005; 23: 1 ‐ 21.en_US
dc.identifier.citedreferenceDuffy SA Taylor JM Terrell JE et al. Interleukin‐6 predicts recurrence and survival among head and neck cancer patients. Cancer. 2008; 113: 750 ‐ 757.en_US
dc.identifier.citedreferenceDe Schutter H Landuyt W Verbeken E Goethals L Hermans R Nuyts S. The prognostic value of the hypoxia markers CA IX and GLUT 1 and the cytokines VEGF and IL 6 in head and neck squamous cell carcinoma treated by radiotherapy +/− chemotherapy. BMC Cancer. 2005; 5: 42.en_US
dc.identifier.citedreferenceSuswam E Li Y Zhang X et al. Tristetraprolin down‐regulates interleukin‐8 and vascular endothelial growth factor in malignant glioma cells. Cancer Res. 2008; 68: 674 ‐ 682.en_US
dc.identifier.citedreferenceBasu A Datta D Zurakowski D Pal S. Altered VEGF mRNA stability following treatments with immunosuppressive agents: implications for cancer development. J Biol Chem. 2010; 285: 25196 ‐ 25202.en_US
dc.identifier.citedreferenceFantini MC Becker C Kiesslich R Neurath MF. Drug insight: novel small molecules and drugs for immunosuppression. Nat Clin Pract Gastroenterol Hepatol. 2006; 3: 633 ‐ 644.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.