Show simple item record

Flow‐driven cloud formation and fragmentation: results from Eulerian and Lagrangian simulations

dc.contributor.authorHeitsch, Fabianen_US
dc.contributor.authorNaab, Thorstenen_US
dc.contributor.authorWalch, Stefanieen_US
dc.date.accessioned2011-11-10T15:34:28Z
dc.date.available2012-09-04T15:27:36Zen_US
dc.date.issued2011-07-21en_US
dc.identifier.citationHeitsch, Fabian; Naab, Thorsten; Walch, Stefanie (2011). "Flow‐driven cloud formation and fragmentation: results from Eulerian and Lagrangian simulations." Monthly Notices of the Royal Astronomical Society 415(1). <http://hdl.handle.net/2027.42/86944>en_US
dc.identifier.issn0035-8711en_US
dc.identifier.issn1365-2966en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86944
dc.description.abstractThe fragmentation of shocked flows in a thermally bistable medium provides a natural mechanism to form turbulent cold clouds as precursors to molecular clouds. Yet because of the large density and temperature differences and the range of dynamical scales involved, following this process with numerical simulations is challenging. We compare two‐dimensional simulations of flow‐driven cloud formation without self‐gravity, using the Lagrangian smoothed particle hydrodynamics (SPH) code vine and the Eulerian grid code proteus . Results are qualitatively similar for both methods, yet the variable spatial resolution of the SPH method leads to smaller fragments and thinner filaments, rendering the overall morphologies different. Thermal and hydrodynamical instabilities lead to rapid cooling and fragmentation into cold clumps with temperatures below 300 K. For clumps more massive than 1 M ⊙ pc −1 , the clump mass function has an average slope of −0.8. The internal velocity dispersion of the clumps is nearly an order of magnitude smaller than their relative motion, rendering it subsonic with respect to the internal sound speed of the clumps but supersonic as seen by an external observer. For the SPH simulations most of the cold gas resides at temperatures below 100 K, while the grid‐based models show an additional, substantial component between 100 and 300 K. Independent of the numerical method, our models confirm that converging flows of warm neutral gas fragment rapidly and form high‐density, low‐temperature clumps as possible seeds for star formation.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherHydrodynamicsen_US
dc.subject.otherInstabilitiesen_US
dc.subject.otherMethods: Numericalen_US
dc.subject.otherStars: Formationen_US
dc.subject.otherISM: Cloudsen_US
dc.subject.otherISM: Kinematics and Dynamicsen_US
dc.titleFlow‐driven cloud formation and fragmentation: results from Eulerian and Lagrangian simulationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Astronomy, University of Michigan, 500 Church St, Ann Arbor, MI 48109‐1042, USAen_US
dc.contributor.affiliationotherDepartment of Physics and Astronomy, UNC Chapel Hill, 120 E Cameron St, Chapel Hill, NC 27599‐3255, USAen_US
dc.contributor.affiliationotherUniversitäts Sternwarte München, Scheinerstr. 1, D‐81679 München, Germanyen_US
dc.contributor.affiliationotherMax Planck Institut für Astrophysik, Karl‐Schwarzschild‐Str. 1, 85741 Garching, Germanyen_US
dc.contributor.affiliationotherSchool of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff CF24 3AAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86944/1/j.1365-2966.2011.18694.x.pdf
dc.identifier.doi10.1111/j.1365-2966.2011.18694.xen_US
dc.identifier.sourceMonthly Notices of the Royal Astronomical Societyen_US
dc.identifier.citedreferenceAbel T., 2010, (arXiv:1003.0937)en_US
dc.identifier.citedreferenceAgertz O. et al., 2007, MNRAS, 380, 963en_US
dc.identifier.citedreferenceAndré P., Belloche A., Motte F., Peretto N., 2007, A&A, 472, 519en_US
dc.identifier.citedreferenceAudit E., Hennebelle P., 2005, A&A, 433, 1en_US
dc.identifier.citedreferenceBallesteros‐Paredes J., 2006, MNRAS, 372, 443en_US
dc.identifier.citedreferenceBallesteros‐Paredes J., Hartmann L., Vázquez‐Semadeni E., 1999, ApJ, 527, 285en_US
dc.identifier.citedreferenceBallesteros‐Paredes J., Gazol A., Kim J., Klessen R. S., Jappsen A.‐K., Tejero E., 2006, ApJ, 637, 384en_US
dc.identifier.citedreferenceBanerjee R., Vázquez‐Semadeni E., Hennebelle P., Klessen R. S., 2009, MNRAS, 398, 1082en_US
dc.identifier.citedreferenceBate M. R., Bonnell I. A., Bromm V., 2003, MNRAS, 339, 577en_US
dc.identifier.citedreferenceBisbas T. G., Wünsch R., Whitworth A. P., Hubber D. A., 2009, A&A, 497, 649en_US
dc.identifier.citedreferenceBurkert A., Hartmann L., 2004, ApJ, 616, 288en_US
dc.identifier.citedreferenceBurkert A., Lin D. N. C., 2000, ApJ, 537, 270en_US
dc.identifier.citedreferenceCombes F., Gerin M., 1985, A&A, 150, 327en_US
dc.identifier.citedreferenceCurtis E. I., Richer J. S., 2010, MNRAS, 402, 603en_US
dc.identifier.citedreferenceDib S., Brandenburg A., Kim J., Gopinathan M., André P., 2008, ApJ, 678, L105en_US
dc.identifier.citedreferenceDobbs C. L., Bonnell I. A., 2007, MNRAS, 376, 1747en_US
dc.identifier.citedreferenceDobbs C. L., Bonnell I. A., Pringle J. E., 2006, MNRAS, 371, 1663en_US
dc.identifier.citedreferenceDobbs C. L., Glover S. C. O., Clark P. C., Klessen R. S., 2008, MNRAS, 389, 1097en_US
dc.identifier.citedreferenceElmegreen B. G., 1993, ApJ, 419, L29en_US
dc.identifier.citedreferenceElmegreen B. G., 2000, ApJ, 530, 277en_US
dc.identifier.citedreferenceElmegreen B. G., 2007, in Kang Y. W., Lee H.‐W., Leung K.‐C., Cheng K.‐S., eds, ASP Conf. Ser. Vol. 362, The Seventh Pacific Rim Conference on Stellar Astrophysics, The Initial Mass Function of Stars. Astron. Soc. Pac., San Francisco, p. 269en_US
dc.identifier.citedreferenceElmegreen B. G., Lada C. J., 1977, ApJ, 214, 725en_US
dc.identifier.citedreferenceFalgarone E., Phillips T. G., 1990, ApJ, 359, 344en_US
dc.identifier.citedreferenceField G. B., 1965, ApJ, 142, 531en_US
dc.identifier.citedreferenceGritschneder M., Naab T., Burkert A., Walch S., Heitsch F., Wetzstein M., 2009, MNRAS, 393, 21en_US
dc.identifier.citedreferenceGritschneder M., Burkert A., Naab T., Walch S., 2010, ApJ, 723, 971en_US
dc.identifier.citedreferenceHartmann L., 2003, ApJ, 585, 398en_US
dc.identifier.citedreferenceHartmann L., Burkert A., 2007, ApJ, 654, 988en_US
dc.identifier.citedreferenceHartmann L., Ballesteros‐Paredes J., Bergin E. A., 2001, ApJ, 562, 852en_US
dc.identifier.citedreferenceHeithausen A., Bensch F., Stutzki J., Falgarone E., Panis J. F., 1998, A&A, 331, L65en_US
dc.identifier.citedreferenceHeitsch F., Burkert A., Hartmann L. W., Slyz A. D., Devriendt J. E. G., 2005, ApJ, 633, L113en_US
dc.identifier.citedreferenceHeitsch F., Hartmann L., 2008, ApJ, 689, 290en_US
dc.identifier.citedreferenceHeitsch F., Zweibel E. G., Slyz A. D., Devriendt J. E. G., 2004, ApJ, 603, 165en_US
dc.identifier.citedreferenceHeitsch F., Slyz A. D., Devriendt J. E. G., Hartmann L. W., Burkert A., 2006, ApJ, 648, 1052en_US
dc.identifier.citedreferenceHeitsch F., Hartmann L. W., Slyz A. D., Devriendt J. E. G., Burkert A., 2008a, ApJ, 674, 316en_US
dc.identifier.citedreferenceHeitsch F., Hartmann L. W., Burkert A., 2008b, ApJ, 683, 786en_US
dc.identifier.citedreferenceHennebelle P., Audit E., 2007, A&A, 465, 431en_US
dc.identifier.citedreferenceHennebelle P., Audit E., Miville‐Deschênes M.‐A., 2007, A&A, 465, 445en_US
dc.identifier.citedreferenceHennebelle P., Banerjee R., Vázquez‐Semadeni E., Klessen R. S., Audit E., 2008, A&A, 486, L43en_US
dc.identifier.citedreferenceHernquist L., Katz N., 1989, ApJS, 70, 419en_US
dc.identifier.citedreferenceHueckstaedt R. M., 2003, New Astron., 8, 295en_US
dc.identifier.citedreferenceJunk V., Walch S., Heitsch F., Burkert A., Wetzstein M., Schartmann M., Price D., 2010, MNRAS, 407, 1933en_US
dc.identifier.citedreferenceKarl S. J., Naab T., Johansson P. H., Kotarba H., Boily C. M., Renaud F., Theis C., 2010, ApJ, 715, L88en_US
dc.identifier.citedreferenceKitsionas S. et al., 2009, A&A, 508, 541en_US
dc.identifier.citedreferenceKlessen R., 1997, MNRAS, 292, 11en_US
dc.identifier.citedreferenceKlessen R. S., Burkert A., 2000, ApJS, 128, 287en_US
dc.identifier.citedreferenceKlessen R. S., Heitsch F., Mac Low M.‐M., 2000, ApJ, 535, 887en_US
dc.identifier.citedreferenceKoyama H., Inutsuka S.‐I., 2002, ApJ, 564, L97en_US
dc.identifier.citedreferenceKoyama H., Inutsuka S.‐I., 2004, ApJ, 602, L25en_US
dc.identifier.citedreferenceLacey C. G., Fall S. M., 1985, ApJ, 290, 154en_US
dc.identifier.citedreferenceLarson R. B., 1981, MNRAS, 194, 809en_US
dc.identifier.citedreferenceLi D., Velusamy T., Goldsmith P. F., Langer W. D., 2007, ApJ, 655, 351en_US
dc.identifier.citedreferenceMcCray R., Kafatos M., 1987, ApJ, 317, 190en_US
dc.identifier.citedreferenceMac Low M.‐M., Klessen R. S., 2004, Rev. Modern Phys., 76, 125en_US
dc.identifier.citedreferenceMayer L., Quinn T., Wadsley J., Stadel J., 2002, Sci, 298, 1756en_US
dc.identifier.citedreferenceMihos J. C., Hernquist L., 1996, ApJ, 464, 641en_US
dc.identifier.citedreferenceMirabel I. F., 1982, ApJ, 256, 112en_US
dc.identifier.citedreferenceMonaghan J. J., 1989, J. Comput. Phys., 82, 1en_US
dc.identifier.citedreferenceMonaghan J. J., 1992, ARA&A, 30, 543en_US
dc.identifier.citedreferenceNaab T., Jesseit R., Burkert A., 2006, MNRAS, 372, 839en_US
dc.identifier.citedreferenceNaab T., Johansson P. H., Ostriker J. P., Efstathiou G., 2007, ApJ, 658, 710en_US
dc.identifier.citedreferenceNagamine K., Cen R., Hernquist L., Ostriker J. P., Springel V., 2005, ApJ, 627, 608en_US
dc.identifier.citedreferenceNelson A. F., Wetzstein M., Naab T., 2009, ApJS, 184, 326en_US
dc.identifier.citedreferenceNigra L., Gallagher J. S. III, Smith L. J., Stanimirović S., Nota A., Sabbi E., 2008, PASP, 120, 972en_US
dc.identifier.citedreferencePadoan P., Nordlund Å., 2002, ApJ, 576, 870en_US
dc.identifier.citedreferencePearce F. R. et al., 1999, ApJ, 521, L99en_US
dc.identifier.citedreferencePrendergast K. H., Xu K., 1993, J. Chemical Phys., 109, 53en_US
dc.identifier.citedreferencePrice D. J., 2008, J. Comput. Phys., 227, 10040en_US
dc.identifier.citedreferenceRagan S. E., Bergin E. A., Gutermuth R. A., 2009, ApJ, 698, 324en_US
dc.identifier.citedreferenceRampp M., Mueller E., Ruffert M., 1998, A&A, 332, 969en_US
dc.identifier.citedreferenceRead J. I., Hayfield T., Agertz O., 2010, MNRAS, 405, 1513en_US
dc.identifier.citedreferenceRoberts W. W. Jr, Huntley J. M., van Albada G. D., 1979, ApJ, 233, 67en_US
dc.identifier.citedreferenceSchneider N., Simon R., Kramer C., Stutzki J., Bontemps S., 2002, A&A, 384, 225en_US
dc.identifier.citedreferenceSlyz A., Prendergast K. H., 1999, A&AS, 139, 199en_US
dc.identifier.citedreferenceSlyz A. D., Devriendt J. E. G., Silk J., Burkert A., 2002, MNRAS, 333, 894en_US
dc.identifier.citedreferenceSmith R. J., Clark P. C., Bonnell I. A., 2009, MNRAS, 396, 830en_US
dc.identifier.citedreferenceSpringel V., 2000, MNRAS, 312, 859en_US
dc.identifier.citedreferenceSpringel V., Hernquist L., 2003, MNRAS, 339, 289en_US
dc.identifier.citedreferenceSteinmetz M., 1996, MNRAS, 278, 1005en_US
dc.identifier.citedreferenceVázquez‐Semadeni E., Ryu D., Passot T., González R. F., Gazol A., 2006, ApJ, 643, 245en_US
dc.identifier.citedreferenceVázquez‐Semadeni E., Gómez G. C., Jappsen A. K., Ballesteros‐Paredes J., González R. F., Klessen R. S., 2007, ApJ, 657, 870en_US
dc.identifier.citedreferenceVietri M., Ferrara A., Miniati F., 1997, ApJ, 483, 262en_US
dc.identifier.citedreferenceWalch S., Burkert A., Whitworth A., Naab T., Gritschneder M., 2009, MNRAS, 400, 13en_US
dc.identifier.citedreferenceWalch S., Naab T., Whitworth A., Burkert A., Gritschneder M., 2010, MNRAS, 402, 2253en_US
dc.identifier.citedreferenceWetzstein M., Nelson A. F., Naab T., Burkert A., 2009, ApJS, 184, 298en_US
dc.identifier.citedreferenceWilliams J. P., Blitz L., McKee C. F., 2000, Protostars and Planets IV. Univ. Arizona Press, Tucson, AZ, p. 97en_US
dc.identifier.citedreferenceWolfire M. G., Hollenbach D., McKee C. F., Tielens A. G. G. M., Bakes E. L. O., 1995, ApJ, 443, 152en_US
dc.identifier.citedreferenceWolfire M. G., McKee C. F., Hollenbach D., Tielens A. G. G. M., 2003, ApJ, 587, 278en_US
dc.identifier.citedreferenceXu K., 2001, J. Comput. Phys., 171, 289en_US
dc.identifier.citedreferenceYang C.‐C., Gruendl R. A., Chu Y.‐H., Mac Low M.‐M., Fukui Y., 2007, ApJ, 671, 374en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.