Show simple item record

Microprinted feeder cells guide embryonic stem cell fate

dc.contributor.authorTavana, Hosseinen_US
dc.contributor.authorMosadegh, Bobaken_US
dc.contributor.authorZamankhan, Parsaen_US
dc.contributor.authorGrotberg, James B.en_US
dc.contributor.authorTakayama, Shuichien_US
dc.date.accessioned2011-11-10T15:34:35Z
dc.date.available2012-12-03T21:17:30Zen_US
dc.date.issued2011-10en_US
dc.identifier.citationTavana, Hossein; Mosadegh, Bobak; Zamankhan, Parsa; Grotberg, James B.; Takayama, Shuichi (2011). "Microprinted feeder cells guide embryonic stem cell fate." Biotechnology and Bioengineering 108(10): 2509-2516. <http://hdl.handle.net/2027.42/86949>en_US
dc.identifier.issn0006-3592en_US
dc.identifier.issn1097-0290en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86949
dc.description.abstractWe introduce a non‐contact approach to microprint multiple types of feeder cells in a microarray format using immiscible aqueous solutions of two biopolymers. Droplets of cell suspension in the denser aqueous phase are printed on a substrate residing within a bath of the immersion aqueous phase. Due to their affinity to the denser phase, cells remain localized within the drops and adhere to regions of the substrate underneath the drops. We show the utility of this technology for creating duplex heterocellular stem cell niches by printing two different support cell types on a gel surface and overlaying them with mouse embryonic stem cells (mESCs). As desired, the type of printed support cell spatially direct the fate of overlaid mESCs. Interestingly, we found that interspaced mESCs colonies on differentiation‐inducing feeder cells show enhanced neuronal differentiation and give rise to dense networks of neurons. This cell printing technology provides unprecedented capabilities to efficiently identify the role of various feeder cells in guiding the fate of stem cells. Biotechnol. Bioeng. 2011;108: 2509–2516. © 2011 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherPolymeric Aqueous Two‐Phase Systemen_US
dc.subject.otherCell Printingen_US
dc.subject.otherCell Microenvironment Engineeringen_US
dc.subject.otherCell–Cell Contacten_US
dc.subject.otherEmbryonic Stem Cell Fateen_US
dc.titleMicroprinted feeder cells guide embryonic stem cell fateen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbsecondlevelStatistics and Numeric Dataen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109; telephone: +1‐734‐615‐5539; fax: (734) 936‐1905en_US
dc.contributor.affiliationumDepartment of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109; telephone: +1‐734‐615‐5539; fax: (734) 936‐1905.en_US
dc.contributor.affiliationotherDepartment of Biomedical Engineering, University of Akron, Akron, Ohioen_US
dc.contributor.affiliationotherDivision of Nano‐Bio and Chemical Engineering WCU Project, UNIST, Ulsan, Republic of Koreaen_US
dc.identifier.pmid21538333en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86949/1/23190_ftp.pdf
dc.identifier.doi10.1002/bit.23190en_US
dc.identifier.sourceBiotechnology and Bioengineeringen_US
dc.identifier.citedreferenceAlbertsson P‐A. 1986. Partition of cell particles and macromolecules. New York: John Wiley & Sons, Inc.en_US
dc.identifier.citedreferenceCalabrese EJ. 2008. Enhancing and regulating neurite outgrowth. Crit Rev Toxicol 38: 391 – 418.en_US
dc.identifier.citedreferenceChen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. 1997. Geometric control of cell life and death. Science 276: 1425 – 1428.en_US
dc.identifier.citedreferenceChen SS, Fitzgerald W, Zimmerberg J, Kleinman HK, Margolis L. 2007. Cell–cell and cell–extracellular matrix interactions regulate embryonic stem cell differentiation. Stem Cells 25: 553 – 561.en_US
dc.identifier.citedreferenceCho CH, Berthiaume F, Tilles AW, Yarmush ML. 2008. A new technique for primary hepatocyte expansion in vitro. Biotechnol Bioeng 101: 345 – 356.en_US
dc.identifier.citedreferenceCui X, Dean D, Ruggeri ZM, Boland T. 2010. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol Bioeng 106: 963 – 969.en_US
dc.identifier.citedreferenceFernandes TG, Kwon S‐J, Bale SS, Lee M‐Y, Diogo MM, Clark DS, Cabral JMS, Dordick JS. 2010. Three‐dimensional cell culture microarray for high‐throughput studies of stem cell fate. Biotechnol Bioeng 106: 106 – 118.en_US
dc.identifier.citedreferenceHui EE, Bhatia S. 2007. Micromechanical control of cell–cell interactions. Proc Natl Acad Sci 104: 5722 – 5726.en_US
dc.identifier.citedreferenceKawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa S, Sasai Y. 2000. Induction of midbrain dopaminergic neurons from ES cells by stromal cell‐derived inducing activity. Neuron 28: 31 – 40.en_US
dc.identifier.citedreferenceKhademhosseini A, Ferreira L, Yeh J, Blumling J, Fukuda J, Eng G, Langer R. 2006. Co‐culture of human embryonic stem cells with murine embryonic fibroblasts on microwell‐patterned substrates. Biomaterials 27: 5968 – 5977.en_US
dc.identifier.citedreferenceKikuchi K, Sumaru K, Edahiro J‐I, Ooshima Y, Sugiura S, Takagi T, Kanamori T. 2009. Stepwise assembly of micropatterned co‐cultures using photoresponsive culture surfaces and its application to hepatic tissue arrays. Biotechnol Bioeng 103: 552 – 561.en_US
dc.identifier.citedreferenceMoon S, Hasan SK, Song YS, Xu F, Keles HO, Manzur F, Mikkilineni S, Hong JW, Nagatomi J, Haeggstrom E, et al. 2010. Layer by layer three‐dimensional tissue epitaxy by cell‐laden hydrogel droplets. Tissue Eng C 16: 157 – 166.en_US
dc.identifier.citedreferenceRosenthal A, Macdonald A, Voldman J. 2007. Cell patterning chip for controlling the stem cell microenvironment. Biomaterrials 28: 3208 – 3216.en_US
dc.identifier.citedreferenceRosoff WJ, Urbach JS, Esrick MA, McAllister RG, Richards LJ, Goodhill GJ. 2004. A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients. Nat Neurosci 7: 678 – 682.en_US
dc.identifier.citedreferenceRoth TM, Ramamurthy P, Ebisu F, Lisak RP, Bealmear BM, Barald KF. 2007. A mouse embryonic stem cell model of Schwann cell differentiation for studies of the role of neurofibromatosis type 1 in Schwann cell development and tumor formation. Glia 15: 1123 – 1133.en_US
dc.identifier.citedreferenceTavana H, Jovic A, Mosadegh B, Lee QY, Liu X, Luker KE, Luker GD, Weiss SJ, Takayama S. 2009. Nanoliter liquid patterning in aqueous environments for spatially‐defined reagent delivery to mammalian cells. Nat Mater 8: 736 – 741.en_US
dc.identifier.citedreferenceTavana H, Mosadegh B, Takayama S. 2010. Polymeric aqueous biphasic systems for non‐contact cell printing on cells: Engineering heterocellular embryonic stem cell niches. Adv Mater 22: 2628 – 2631.en_US
dc.identifier.citedreferenceTsai RYL, McKay RDG. 2000. Cell contact regulates fate choice by cortical stem cells. J Neurosci 20: 3725 – 3735.en_US
dc.identifier.citedreferenceVazin T, Chen J, Lee C‐T, Amable R, Freed WJ. 2008. Assessment of stromal‐derived inducing activity in the generation of dopaminergic neurons from human embryonic stem cells. Stem Cells 26: 1517 – 1525.en_US
dc.identifier.citedreferenceYang J, Yamato M, Sekine H, Sekiya S, Tsuda Y, Ohashi K, Shimizu T, Okano T. 2009. Tissue engineering using laminar cellular assemblies. Adv Mater 21: 3404 – 3409.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.