Show simple item record

Novel methods to incorporate photosensitizers into nanocarriers for cancer treatment by photodynamic therapy

dc.contributor.authorWang, Shouyanen_US
dc.contributor.authorFan, Wenzheen_US
dc.contributor.authorKim, Gwangseongen_US
dc.contributor.authorHah, Hoe Jinen_US
dc.contributor.authorLee, Yong‐Eun Kooen_US
dc.contributor.authorKopelman, Raoulen_US
dc.contributor.authorEthirajan, Manivannanen_US
dc.contributor.authorGupta, Anuragen_US
dc.contributor.authorGoswami, Lalit N.en_US
dc.contributor.authorPera, Paulaen_US
dc.contributor.authorMorgan, Janeten_US
dc.contributor.authorPandey, Ravindra K.en_US
dc.date.accessioned2011-11-10T15:35:37Z
dc.date.available2012-11-02T18:56:45Zen_US
dc.date.issued2011-09en_US
dc.identifier.citationWang, Shouyan; Fan, Wenzhe; Kim, Gwangseong; Hah, Hoe Jin; Lee, Yong‐eun Koo ; Kopelman, Raoul; Ethirajan, Manivannan; Gupta, Anurag; Goswami, Lalit N.; Pera, Paula; Morgan, Janet; Pandey, Ravindra K. (2011). "Novel methods to incorporate photosensitizers into nanocarriers for cancer treatment by photodynamic therapy." Lasers in Surgery and Medicine 43(7): 686-695. <http://hdl.handle.net/2027.42/86992>en_US
dc.identifier.issn0196-8092en_US
dc.identifier.issn1096-9101en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/86992
dc.description.abstractObjective A hydrophobic photosensitizer, 2‐[1‐hexyloxyethyl]‐2‐devinyl pyropheophorbide‐a (HPPH), was loaded into nontoxic biodegradable amine functionalized polyacrylamide (AFPAA) nanoparticles using three different methods (encapsulation, conjugation, and post‐loading), forming a stable aqueous dispersion. Each formulation was characterized for physicochemical properties as well as for photodynamic performance so as to determine the most effective nanocarrier formulation containing HPPH for photodynamic therapy (PDT). Materials and Methods HPPH or HPPH‐linked acrylamide was added into monomer mixture and polymerized in a microemulsion for encapsulation and conjugation, respectively. For post‐loading, HPPH was added to an aqueous suspension of pre‐formed nanoparticles. Those nanoparticles were tested for optical characteristics, dye loading, dye leaching, particle size, singlet oxygen production, dark toxicity, in vitro photodynamic cell killing, whole body fluorescence imaging and in vivo PDT. Results HPPH was successfully encapsulated, conjugated or post‐loaded into the AFPAA nanoparticles. The resultant nanoparticles were spherical with a mean diameter of 29 ± 3 nm. The HPPH remained intact after entrapment and the HPPH leaching out of nanoparticles was negligible for all three formulations. The highest singlet oxygen production was achieved by the post‐loaded formulation, which caused the highest phototoxicity in in vitro assays. No dark toxicity was observed. Post‐loaded HPPH AFPAA nanoparticles were localized to tumors in a mouse colon carcinoma model, enabling fluorescence imaging, and producing a similar photodynamic tumor response to that of free HPPH in equivalent dose. Conclusions Post‐loading is the promising method for loading nanoparticles with hydrophobic photosensitizers to achieve effective in vitro and in vivo PDT. Lasers Surg. Med. 43:686–695, 2011. © 2011 Wiley‐Liss, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherHPPHen_US
dc.subject.otherPost‐Loadingen_US
dc.subject.otherPolyacrylamideen_US
dc.subject.otherBiodegradableen_US
dc.subject.otherPhotodynamic Therapyen_US
dc.subject.otherCancer Treatmenten_US
dc.titleNovel methods to incorporate photosensitizers into nanocarriers for cancer treatment by photodynamic therapyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelSurgery and Anesthesiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumUniversity of Michigan Chemistry, 930 North University Avenue, Ann Arbor, MI 48109.en_US
dc.contributor.affiliationotherPDT Center and Department of Dermatology, Roswell Park Cancer Institute, Buffalo, New York 14263en_US
dc.contributor.affiliationotherRoswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263.en_US
dc.identifier.pmid22057496en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/86992/1/21113_ftp.pdf
dc.identifier.doi10.1002/lsm.21113en_US
dc.identifier.sourceLasers in Surgery and Medicineen_US
dc.identifier.citedreferenceJemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61: 69 – 90.en_US
dc.identifier.citedreferencePeer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2: 751 – 760.en_US
dc.identifier.citedreferenceFayter D, Corbett M, Heirs M, Fox D, Eastwood A. A systematic review of photodynamic therapy in the treatment of pre‐cancerous skin conditions, Barrett's oesophagus and cancers of the biliary tract, brain, head and neck, lung, oesophagus and skin. Health Technol Assess 2010; 14: 1 – 288.en_US
dc.identifier.citedreferenceO'Connor AE, Gallagher WM, Byrne AT. Porphyrin and nonporphyrin in oncology: Preclinical and clinical advances in photodynamic therapy. Photochem Photobiol 2009; 85: 1053 – 1074.en_US
dc.identifier.citedreferenceHenderson BW, Gollnick SO, Snyder JW, Busch TM, Kousis PC, Cheney RT, Morgan J. Choice of oxygen‐conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors. Cancer Res 2004; 64: 2120 – 2126.en_US
dc.identifier.citedreferenceBellnier DA, Greco WR, Nava H, Loewen GM, Oseroff AR, Dougherty TJ. Mild skin photosensitivity in cancer patients following injection of Photochlor (2‐[1‐hexyloxyethyl]‐2‐devinyl pyropheophorbide‐a; HPPH) for photodynamic therapy. Cancer Chemother Pharmacol 2006; 57: 40 – 45.en_US
dc.identifier.citedreferenceHenderson BW, Bellnier DA, Greco WR, Sharma A, Pandey RK, Vaughan LA, Weishaupt KR, Dougherty TJ. An in vivo quantitative structure‐activity relationship for a congeneric series of pyropheophorbide derivatives as photosensitizers for photodynamic therapy. Cancer Res 1997; 57: 4000.en_US
dc.identifier.citedreferencePandey RK, Sumlin AB, Constantine S, Aoudia M, Potter WR, Bellnier DA, Henderson BW, Rodgers MA, Smith KM, Dougherty TJ. Alkyl ether analogs of chlorophyll‐a derivatives: Part 1. Synthesis, photophysical properties and photodynamic efficacy. Photochem Photobiol 1996; 64: 194 – 204.en_US
dc.identifier.citedreferenceBellnier DA, Greco WR, Loewen GM, Nava H, Oseroff AR, Pandey RK, Tsuchida T, Dougherty TJ. Population pharmacokinetics of the photodynamic therapy agent 2‐[1‐hexyloxyethyl]‐2‐devinyl pyropheophorbide‐a in cancer patients. Cancer Res 2003; 63: 1806 – 1813.en_US
dc.identifier.citedreferenceFurukawa K, Yamamoto H, Crean DH, Kato H, Mang TS. Localization and treatment of transformed tissues using the photodynamic sensitizer 2‐[1‐hexyloxyethyl]‐2‐devinyl pyropheophorbide‐a. Lasers Surg Med 1996; 18: 157 – 166.en_US
dc.identifier.citedreferenceAnderson TR, Dougherty TJ, Tan D, Sumlin A, Schlossin JM, Kanter PM. Photodynamic therapy for sarcoma pulmonary metastases. Anticancer Res 2003; 23: 3713 – 3718.en_US
dc.identifier.citedreferenceLoewen G, Pandey R, Belliner D, Henderson B, Dougherty T. Endobronchial photodynamic therapy for lung cancer. Lasers Surg Med 2006; 38: 364 – 370.en_US
dc.identifier.citedreferenceSunar U, Rohrbach D, Rigual N, Tracy E, Keymel K, Cooper MT, Baumann H, Henderson BW. Monitoring photobleaching and hemodynamic responses to HPPH‐mediated photodynamic therapy of head and neck cancer: A case report. Opt Express 2010; 18: 14969 – 14978.en_US
dc.identifier.citedreferenceBaba K, Pudavar HE, Roy I, Ohulchanskyy TY, Chen YH, Pandey RK, Prasad PN. New method for delivering a hydrophobic drug for photodynamic therapy using pure nanocrystal form of the drug. Mol Pharm 2007; 4: 289 – 297.en_US
dc.identifier.citedreferenceWong J, Brugger A, Khare A, Chaubal M, Papadopoulos P, Rabinow B, Kipp J, Ning J. Suspensions for intravenous (IV) injection: A review of development, preclinical and clinical aspects. Adv Drug Deliv Rev 2008; 60: 939 – 954.en_US
dc.identifier.citedreferenceKoo YE L, Reddy GR, Bhojani M, Schneider R, Philbert MA, Rehemtulla A, Ross BD, Kopelman R. Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev 2006; 58: 1556 – 1577.en_US
dc.identifier.citedreferenceCinteza LO, Ohulchanskyy TY, Sahoo Y, Bergey EJ, Pandey RK, Prasad PN. Diacyllipid micelle‐based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy. Mol Pharm 2006; 3: 415 – 423.en_US
dc.identifier.citedreferenceMatsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy‐mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46: 6387 – 6392.en_US
dc.identifier.citedreferenceMaeda H. The enhanced permeability and retention (epr) effect in tumor vasculature: the key role of tumor‐selective macromolecular drug targeting. Advan Enzyme Regul 2001; 41: 189 – 207.en_US
dc.identifier.citedreferenceCheng Y, Samia AC, Meyers JD, Panagopoulos I, Fei BW, Burda C. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc 2008; 130: 10643 – 10647.en_US
dc.identifier.citedreferenceYan F, Kopelman R. The embedding of meta‐tetra(hydroxyphenyl)‐chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH‐dependent optical properties. Photochem Photobiol 2003; 78: 587 – 591.en_US
dc.identifier.citedreferenceRoy I, Ohulchanskyy TY, Pudavar HE, Bergey EJ, Oseroff AR, Morgan J, Dougherty TJ, Prasad PN. Ceramic‐based nanoparticles entrapping water‐insoluble photosensitizing anticancer drugs: A novel drug‐carrier system for photodynamic therapy. J Am Chem Soc 2003; 125: 7860 – 7865.en_US
dc.identifier.citedreferenceGao D, Agayan RR, Xu H, Philbert MA, Kopelman R. Nanoparticles for two‐photon photodynamic therapy in living cells. Nano Lett 2006; 6: 2383 – 2386.en_US
dc.identifier.citedreferenceGao D, Xu H, Philbert MA, Kopelman R. Ultrafine hydrogel nanoparticles: synthetic approach and therapeutic application in living cells. Ange Chem Int Ed 2007; 46: 2224 – 2227.en_US
dc.identifier.citedreferenceTang W, Xu H, Kopelman R, Philbert MA. Photodynamic characterization and in vitro application of methylene blue‐containing nanoparticle platforms. Photochem Photobiol 2005; 81: 242 – 249.en_US
dc.identifier.citedreferenceTang W, Xu H, Park EJ, Philbert MA, Kopelman R. Encapsulation of methylene blue in polyacrylamide nanoparticle platforms protects its photodynamic effectiveness. Biochem Biophys Res Commun 2008; 369: 579 – 583.en_US
dc.identifier.citedreferenceKim S, Ohulchanskyy TY, Pudavar HE, Pandey RK, Prasad PN. Organically modified silica nanoparticles co‐encapsulating photosensitizing drug and aggregation‐enhanced two‐photon absorbing fluorescent dye aggregates for two‐photon photodynamic therapy. J Am Chem Soc 2007; 129: 2669 – 2675.en_US
dc.identifier.citedreferenceVargas A, Eid M, Fanchaouy M, Gurny R, Delie F. In vivo photodynamic activity of photosensitizer‐loaded nanoparticles: formulation properties, administration parameters and biological issues involved in PDT outcome. Eur J Pharm Biopharm 2008; 69: 43 – 53.en_US
dc.identifier.citedreferenceMoreno MJ, Monson E, Reddy RG, Rehemtulla A, Ross BD, Philbert M, Schneider RJ, Kopelman R. Production of singlet oxygen by Ru(dpp(SO3)(2))(3) incorporated in polyacrylamide PEBBLES. Sens Actuator B Chem 2003; 90: 82 – 89.en_US
dc.identifier.citedreferenceHarrell JA, Kopelman R. Biocompatible probes measure intracellular activity. Biophoton Int 2000; 7: 22.en_US
dc.identifier.citedreferenceWenger Y, Schneider IIRJ, Reddy GR, Kopelman R, Jolliet O, Philbert MA. Tissue distribution and pharmacokinetics of stable polyacrylamide nanoparticles following intravenous injection in the rat. Toxicol Appl Pharmacol 2011; 251: 181 – 190.en_US
dc.identifier.citedreferenceReddy GR, Bhojani MS, McConville P, Moody J, Moffat BA, Hall DE, Kim G, Koo YEL, Woolliscroft MJ, Sugai JV, Johnson TD, Philbert MA, Kopelman R, Rehemtulla A, Ross BD. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 2006; 12: 6677 – 6686.en_US
dc.identifier.citedreferenceLambert CR, Reddi E, Spikes JD, Rodgers MAJ, Jori G. The effects of porphyrin structure and aggregation state on photosensitized processes in aqueous and micellar media. Photochem Photobiol 1986; 44: 595 – 601.en_US
dc.identifier.citedreferenceKelbauskas L, Dietel W. Internalization of aggregated photosensitizers by tumor cells: subcellular time‐resolved fluorescence spectroscopy on derivatives of pyropheophorbide‐a ethers and chlorin e6 under femtosecond one‐ and two‐photon excitations. Photochem Photobiol 2002; 76: 686 – 694.en_US
dc.identifier.citedreferenceZhang Y, Zhu W, Wang BB, Ding JD. A novel microgel and associated post‐fabrication encapsulation technique of proteins. J Controlled Release 2005; 105: 260.en_US
dc.identifier.citedreferenceChiu HC, Lin YF, Hung SH. Equilibrium swelling of copolymerized acrylic acid – Methacrylated dextran networks: Effects of pH and neutral salt. Macromolecules 2002; 35: 5235 – 5242.en_US
dc.identifier.citedreferenceTan HP, Chu CR, Payne KA, Marra KG. Injectable in situ forming biodegradable chitosan‐hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 2009; 30: 2499 – 2506.en_US
dc.identifier.citedreferencePallenberg AJ, Dobhal MP, Pandey RK. Efficient synthesis of pyropheophorbide‐ a and its derivatives. Org Proc Res Dev 2004; 8: 287 – 290.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.