Show simple item record

Development of a brain metastatic canine prostate cancer cell line

dc.contributor.authorThudi, Nanda K.en_US
dc.contributor.authorShu, Sherry T.en_US
dc.contributor.authorMartin, Chelsea K.en_US
dc.contributor.authorLanigan, Lisa G.en_US
dc.contributor.authorNadella, Murali V.P.en_US
dc.contributor.authorVan Bokhoven, Adrieen_US
dc.contributor.authorWerbeck, Jillian L.en_US
dc.contributor.authorSimmons, Jessica K.en_US
dc.contributor.authorMurahari, Sridharen_US
dc.contributor.authorKisseberth, William C.en_US
dc.contributor.authorBreen, Matthewen_US
dc.contributor.authorWilliams, Christinaen_US
dc.contributor.authorChen, Ching‐shihen_US
dc.contributor.authorMcCauley, Laurie K.en_US
dc.contributor.authorKeller, Evan T.en_US
dc.contributor.authorRosol, Thomas J.en_US
dc.date.accessioned2011-11-10T15:35:58Z
dc.date.available2012-11-02T18:56:45Zen_US
dc.date.issued2011-09en_US
dc.identifier.citationThudi, Nanda K.; Shu, Sherry T.; Martin, Chelsea K.; Lanigan, Lisa G.; Nadella, Murali V.P.; Van Bokhoven, Adrie; Werbeck, Jillian L.; Simmons, Jessica K.; Murahari, Sridhar; Kisseberth, William C.; Breen, Matthew; Williams, Christina; Chen, Ching‐shih ; McCauley, Laurie K.; Keller, Evan T.; Rosol, Thomas J. (2011). "Development of a brain metastatic canine prostate cancer cell line." The Prostate 71(12): 1251-1263. <http://hdl.handle.net/2027.42/87007>en_US
dc.identifier.issn0270-4137en_US
dc.identifier.issn1097-0045en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87007
dc.description.abstractBACKGROUND Prostate cancer in men has a high mortality and morbidity due to metastatic disease. The pathobiology of prostate cancer metastasis is not well understood and cell lines and animal models that recapitulate the complex nature of the disease are needed. Therefore, the goal of the study was to establish and characterize a new prostate cancer line derived from a dog with spontaneous prostate cancer. METHODS A new cell line (Leo) was derived from a dog with spontaneous prostate cancer. Immunohistochemistry and PCR were used to characterize the primary prostate cancer and xenografts in nude mice. Subcutaneous tumor growth and metastases in nude mice were evaluated by bioluminescent imaging, radiography and histopathology. In vitro chemosensitivity of Leo cells to therapeutic agents was measured. RESULTS Leo cells expressed the secretory epithelial cytokeratins (CK)8, 18, and ductal cell marker, CK7. The cell line grew in vitro (over 75 passages) and was tumorigenic in the subcutis of nude mice. Following intracardiac injection, Leo cells metastasized to the brain, spinal cord, bone, and adrenal gland. The incidence of metastases was greatest to the central nervous system (80%) with a lower incidence to bone (20%) and the adrenal glands (16%). In vitro chemosensitivity assays demonstrated that Leo cells were sensitive to Velcade and an HDAC‐42 inhibitor with IC 50 concentrations of 1.9 nm and 0.95 µm, respectively. CONCLUSION The new prostate cancer cell line (Leo) will be a valuable model to investigate the mechanisms of the brain and bone metastases. Prostate 71:1251–1263, 2011. © 2011 Wiley‐Liss, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherProstate Canceren_US
dc.subject.otherBrain Metastasisen_US
dc.subject.otherSpinal Cord Metastasisen_US
dc.subject.otherDogen_US
dc.subject.otherCanineen_US
dc.subject.otherBone Metastasisen_US
dc.titleDevelopment of a brain metastatic canine prostate cancer cell lineen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartments of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherDepartment of Radiation Oncology, University of Alabama, Birmingham, Alabamaen_US
dc.contributor.affiliationotherDepartment of Veterinary Biosciences, The Ohio State University, Columbus, Ohioen_US
dc.contributor.affiliationotherDepartment of Pathology, University of Colorado Health Sciences Center, Aurora, Coloradoen_US
dc.contributor.affiliationotherDepartment of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohioen_US
dc.contributor.affiliationotherDepartment of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolinaen_US
dc.contributor.affiliationotherDivision of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohioen_US
dc.contributor.affiliationother1925 Coffey Road, Columbus, OH 43210.en_US
dc.identifier.pmid21321976en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87007/1/21341_ftp.pdf
dc.identifier.doi10.1002/pros.21341en_US
dc.identifier.sourceThe Prostateen_US
dc.identifier.citedreferenceJemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics, 2008. CA Cancer J Clin 2008; 58: 71 – 96.en_US
dc.identifier.citedreferenceWaters DJ, Sakr WA, Hayden DW, Lang CM, McKinney LA, Murphy GP, Radinsky R, Ramoner R, Richardson RC, Tindall DJ. Workgroup 4: Spontaneous prostate carcinoma in dogs and nonhuman primates. Prostate 1998; 36: 64 – 67.en_US
dc.identifier.citedreferenceKhanna C, Lindblad‐Toh K, Vail D, London C, Bergman P, Barber L, Breen M, Kitchell B, McNeil E, Modiano JF. The dog as a cancer model. Nat Biotechnol 2006; 24: 1065 – 1066.en_US
dc.identifier.citedreferenceLeRoy BE, Thudi NK, Nadella MVP, Toribio RE, Tannehill‐Gregg SH, van Bokhoven A, Davis D, Corn S, Rosol TJ. New bone formation and osteolysis by a metastatic, highly invasive canine prostate carcinoma xenograft. Prostate 2006; 66: 1213 – 1222.en_US
dc.identifier.citedreferenceBubendorf L, Schöpfer A, Wagner U, Sauter G, Moch H, Willi N, Gasser TC, Mihatsch MJ. Metastatic patterns of prostate cancer: An autopsy study of 1,589 patients. Hum Pathol 2000; 31: 578 – 583.en_US
dc.identifier.citedreferenceHarisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R. Noninvasive detection of clinically occult lymph‐node metastases in prostate cancer. N Engl J Med 2003; 348: 2491 – 2499.en_US
dc.identifier.citedreferenceShah RB, Mehra R, Chinnaiyan AM, Shen R, Ghosh D, Zhou M, MacVicar GR, Varambally S, Harwood J, Bismar TA. Androgen‐independent prostate cancer is a heterogeneous group of diseases lessons from a rapid autopsy program. Cancer Res 2004; 64: 9209 – 9216.en_US
dc.identifier.citedreferenceWu S, Jones E, Gulley J, Arlen P, Chen C, Figg W, Dahut W. Routine interval computed tomography in detecting new soft tissue disease in patients with androgen‐independent prostate cancer (AIPC) and only bone metastasis. J Clin Oncol 2006; 24: 4621.en_US
dc.identifier.citedreferenceTremont‐Lukats IW, Bobustuc G, Lagos GK, Lolas K, Kyritsis AP, Puduvalli VK. Brain metastasis from prostate carcinoma. Cancer 2003; 98: 363 – 3638.en_US
dc.identifier.citedreferenceMarosi C. Chemotherapy in patients with brain metastases. Mag Eur Med Oncol 2008; 1: 11 – 13.en_US
dc.identifier.citedreferenceThudi NK, Martin CK, Nadella MVP, Fernandez SA, Werbeck JL, Pinzone JJ, Rosol TJ. Zoledronic acid decreased osteolysis but not bone metastasis in a nude mouse model of canine prostate cancer with mixed bone lesions. Prostate 2008; 68: 1116 – 1125.en_US
dc.identifier.citedreferenceStone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF. Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 1978; 21: 274 – 281.en_US
dc.identifier.citedreferenceNadella MV, Kisseberth WC, Nadella KS, Thudi NK, Thamm DH, McNiel EA, Yilmaz A, Boris‐Lawrie K, Rosol TJ. NOD/SCID mouse model of canine T‐cell lymphoma with humoral hypercalcaemia of malignancy: Cytokine gene expression profiling and in vivo bioluminescent imaging. Vet Comp Oncol 2008; 6: 39 – 54.en_US
dc.identifier.citedreferenceWright K, El Masri W, Osman A, Roberts S, Trivedi J, Ashton B, Johnson W. The cell culture expansion of bone marrow stromal cells from humans with spinal cord injury: Implications for future cell transplantation therapy. Spinal Cord 2008; 46: 811 – 817.en_US
dc.identifier.citedreferenceKaewsakhorn T, Kisseberth WC, Capen CC, Hayes KA, Calverley MJ, Inpanbutr N. Effects of calcitriol, seocalcitol, and medium‐chain triglyceride on a canine transitional cell carcinoma cell line. Anticancer Res 2005; 25: 2689 – 2696.en_US
dc.identifier.citedreferenceBreen M, Bullerdiek J, Langford CF. The DAPI banded karyotype of the domestic dog ( Canis familiaris ) generated using chromosome‐specific paint probes. Chromosome Res 1999; 7: 401 – 406.en_US
dc.identifier.citedreferenceBreen M, Jouquand S, Renier C, Mellersh CS, Hitte C, Holmes NG, Chéron A, Suter N, Vignaux F, Bristow AE. Chromosome‐specific single‐locus fish probes allow anchorage of an 1800‐marker integrated radiation‐hybrid/linkage map of the domestic dog genome to all chromosomes. Genome Res 2001; 11: 1784.en_US
dc.identifier.citedreferenceThomas R, Duke S, Karlsson E, Evans A, Ellis P, Lindblad‐Toh K, Langford C, Breen M. A genome assembly‐integrated dog 1 Mb BAC microarray: A cytogenetic resource for canine cancer studies and comparative genomic analysis. Cytogenet Genome Res 2008; 122: 110 – 1121.en_US
dc.identifier.citedreferenceBreen M, Hitte C, Lorentzen TD, Thomas R, Cadieu E, Sabacan L, Scott A, Evanno G, Parker HG, Kirkness EF, Hudson R, Guyon R, Mahairas GG, Gelfenbeyn B, Fraser CM, Andre C, Galibert F, Ostrander EA. An integrated 4249 marker FISH/RH map of the canine genome. BMC Genomics 2004; 5: 65.en_US
dc.identifier.citedreferenceIrizarry RA, Hobbs B, Collin F, Beazer‐Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249.en_US
dc.identifier.citedreferenceSmyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3: 1027.en_US
dc.identifier.citedreferenceGordon A, Glazko G, Qiu X, Yakovlev A. Control of the mean number of false discoveries, Bonferroni and stability of multiple testing. Ann Appl Stat 2007; 1: 179 – 190.en_US
dc.identifier.citedreferenceLeav I, Schelling KH, Adams JY, Merk FB, Alroy J. Role of canine basal cells in prostatic post natal development, induction of hyperplasia, sex hormone‐stimulated growth; and the ductal origin of carcinoma. Prostate 2001; 47: 149 – 163.en_US
dc.identifier.citedreferenceLeRoy BE, Nadella MVP, Toribio RE, Leav I, Rosol TJ. Canine prostate carcinomas express markers of urothelial and prostatic differentiation. Vet Pathol 2004; 41: 131 – 140.en_US
dc.identifier.citedreferenceChapdelaine P, Gauthier E, Ho‐Kim MA, Bissonnette L, Tremblay RR, Dube JY. Characterization and expression of the prostatic arginine esterase gene, a canine glandular kallikrein. DNA Cell Biol 1991; 10: 49 – 59.en_US
dc.identifier.citedreferenceArnold SM, Young AB, Munn RK, Patchell RA, Nanayakkara N, Markesbery WR. Expression of p53, Bcl‐2, E‐cadherin, matrix metalloproteinase‐9, and tissue inhibitor of metalloproteinases‐1 in paired primary tumors and brain metastasis. Clin Cancer Res 1999; 5: 4028 – 4033.en_US
dc.identifier.citedreferenceYano S, Shinohara H, Herbst RS, Kuniyasu H, Bucana CD, Ellis LM, Davis DW, McConkey DJ, Fidler IJ. Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis 1. Cancer Res 2000; 60: 4959 – 4967.en_US
dc.identifier.citedreferenceTeske E, Naan E, Van Dijk E, Van Garderen E, Schalken J. Canine prostate carcinoma: Epidemiological evidence of an increased risk in castrated dogs. Mol Cell Endocrinol 2002; 197: 251 – 255.en_US
dc.identifier.citedreferenceNathoo N, Chahlavi A, Barnet GH, Toms SA. Pathobiology of brain metastases. Br Med J 2005; 58: 237 – 242.en_US
dc.identifier.citedreferenceLee TH, Avraham HK, Jiang S, Avraham S. Vascular endothelial growth factor modulates the transendothelial migration of MDA‐MB‐231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem 2003; 278: 5277 – 5284.en_US
dc.identifier.citedreferenceMisko T. Nerve growth factor in neuronal development and maintenance. J Exp Biol 1987; 132: 177 – 190.en_US
dc.identifier.citedreferenceBothwell M. Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci 1995; 18: 223 – 253.en_US
dc.identifier.citedreferenceHernandez J, Thompson IM. Prostate‐specific antigen: A review of the validation of the most commonly used cancer biomarker. Cancer 2004; 101: 894 – 904.en_US
dc.identifier.citedreferenceRobert M, Gibbs BF, Jacobson E, Gagnon C. Characterization of prostate‐specific antigen proteolytic activity on its major physiological substrate, the sperm motility inhibitor precursor/semenogelin I. Biochemistry 1997; 36: 3811 – 3819.en_US
dc.identifier.citedreferenceElliott MB, Irwin DM, Diamandis EP. In silico identification and Bayesian phylogenetic analysis of multiple new mammalian kallikrein gene families. Genomics 2006; 88: 591 – 599.en_US
dc.identifier.citedreferenceDube J. Search for androgen response elements in the proximal promoter of the canine prostate arginine esterase gene. J Androl 1995; 16: 304 – 311.en_US
dc.identifier.citedreferenceClements J. The glandular kallikrein family of enzymes: Tissue‐specific expression and hormonal regulation. Endocr Rev 1989; 10: 393 – 419.en_US
dc.identifier.citedreferenceYousef GM, Diamandis EP. An overview of the kallikrein gene families in humans and other species: Emerging candidate tumour markers. Clin Biochem 2003; 36: 443 – 452.en_US
dc.identifier.citedreferenceLai CL, van den Ham R, van Leenders G, van der Lugt J, Mol JA, Teske E. Histopathological and immunohistochemical characterization of canine prostate cancer. Prostate 2008; 68: 477 – 488.en_US
dc.identifier.citedreferenceWittrant Y, Theoleyre S, Chipoy C, Padrines M, Blanchard F, Heymann D, Redini F. RANKL/RANK/OPG: New therapeutic targets in bone tumours and associated osteolysis. Biochimica Biophysica Acta‐Rev Cancer 2004; 1704: 49 – 57.en_US
dc.identifier.citedreferenceZhang J, Dai J, Yao Z, Lu Y, Dougall W, Keller ET. Soluble receptor activator of nuclear factor κB Fc diminishes prostate cancer progression in bone. Cancer Res 2003; 63: 7883 – 7890.en_US
dc.identifier.citedreferenceWhang P, Gamradt S, Gates J, Lieberman J. Effects of the proteasome inhibitor bortezomib on osteolytic human prostate cancer cell metastases. Prostate Cancer Prostatic Dis 2005; 8: 327 – 334.en_US
dc.identifier.citedreferenceMoreau P, Coiteux V, Hulin C, Leleu X, van de Velde H, Acharya M, Harousseau JL. Prospective comparison of subcutaneous versus intravenous administration of bortezomib in patients with multiple myeloma. Haematologica 2008; 93: 1908 – 1911.en_US
dc.identifier.citedreferenceAttar EC, DeAngelo DJ, Supko JG, D'Amato F, Zahrieh D, Sirulnik A, Wadleigh M, Ballen KK, McAfee S, Miller KB. Phase I and pharmacokinetic study of bortezomib in combination with idarubicin and cytarabine in patients with acute myelogenous leukemia. Clin Cancer Res 2008; 14: 1446 – 1454.en_US
dc.identifier.citedreferenceKulp SK, Chen CS, Wang DS, Chen CY, Chen CS. Antitumor effects of a novel phenylbutyrate‐based histone deacetylase inhibitor,(S)‐HDAC‐42, in prostate cancer. Clin Cancer Res 2006; 12: 5199 – 5206.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.