Show simple item record

Oxide‐Assisted Degradation of Ni‐Base Single Crystals During Cyclic Loading: the Role of Coatings

dc.contributor.authorPollock, Tresa M.en_US
dc.contributor.authorLaux, Brittaen_US
dc.contributor.authorBrundidge, Clinique L.en_US
dc.contributor.authorSuzuki, Akaneen_US
dc.contributor.authorHe, Ming Y.en_US
dc.date.accessioned2011-11-10T15:36:24Z
dc.date.available2012-07-12T17:42:24Zen_US
dc.date.issued2011-06en_US
dc.identifier.citationPollock, Tresa M.; Laux, Britta; Brundidge, Clinique L.; Suzuki, Akane; He, Ming Y. (2011). "Oxide‐Assisted Degradation of Ni‐Base Single Crystals During Cyclic Loading: the Role of Coatings." Oxide‐Assisted Degradation of Ni‐Base Single Crystals During Cyclic Loading: the Role of Coatings 94: s136-s145. <http://hdl.handle.net/2027.42/87025>en_US
dc.identifier.issn0002-7820en_US
dc.identifier.issn1551-2916en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87025
dc.publisherBlackwell Publishing Incen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleOxide‐Assisted Degradation of Ni‐Base Single Crystals During Cyclic Loading: the Role of Coatingsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48105en_US
dc.contributor.affiliationotherMaterials Department, University of California, Santa Barbara, CA 93106en_US
dc.contributor.affiliationotherGE Global Research, Niskayuna, NY 12309en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87025/1/jace4578.pdf
dc.identifier.doi10.1111/j.1551-2916.2011.04578.xen_US
dc.identifier.sourceOxide‐Assisted Degradation of Ni‐Base Single Crystals During Cyclic Loading: the Role of Coatingsen_US
dc.identifier.citedreferenceA. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, “ Mechanisms Controlling the Durability of Thermal Barrier Coatings,” Prog. Mater. Sci., 46, 505 – 53 ( 2001 ).en_US
dc.identifier.citedreferenceT. M. Pollock and S. Tin, “ Nickel‐Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties,” AIAA J.: Propulsion Power, 22 [2] 361 – 74 ( 2006 ).en_US
dc.identifier.citedreferenceA. G. Evans, D. R. Clarke, and C. G. Levi, “ The Influence of Oxides on the Performance of Advanced Gas Turbines,” J. Eur. Ceram. Soc., 28, 1405 – 919 ( 2008 ).en_US
dc.identifier.citedreferenceY. L. Bihan, P.‐Y. Joubert, and D. Placko, “ Wall Thickness Evaluation of Single‐Crystal Hollow Blades by Eddy Current Sensor,” NDT&E Int., 34, 363 – 8 ( 2001 ).en_US
dc.identifier.citedreferenceR. C. Reed, The Superalloys: Fundamentals and Applications. Cambridge University Press, Cambridge, 2006.en_US
dc.identifier.citedreferenceA. Suzuki, M. F. X. Gigliotti, B. T. Hazel, D. G. Konitzer, and T. M. Pollock, “ Crack Progression During Sustained Peak Low Cycle Fatigue in René N5,” Metall. Mater. Trans., 41A, 948 – 56 ( 2010 ).en_US
dc.identifier.citedreferenceA. G. Evans, M. Y. He, A. Suzuki, M. Gigliotti, B. Hazel, and T. M. Pollock, “ The Mechanism Governing Sustained Peak Low Cycle Fatigue of Coated Superalloys,” Acta Mater., 57, 2969 – 83 ( 2009 ).en_US
dc.identifier.citedreferenceT. E. Strangman, “ Thermal‐Mechanical Fatigue Life Model for Coated Superalloy Turbine Components ”; pp. 795 – 804 in Superalloys 1992, Edited by S. D. Antolovich., et al TMS, Warrendale, PA, 1992.en_US
dc.identifier.citedreferenceJ. W. Holmes and F. A. McClintock, “ The Chemical and Mechanical Processes of Thermal Fatigue Degradation of an Aluminide Coating,” Metall. Trans., 21A, 1209 – 22 ( 1990 ).en_US
dc.identifier.citedreferenceP. Moretto and J. Bressers, “ Thermomechanical Fatigue Degradation of a Nickel‐Aluminide Coating on a Single Crystal Superalloy,” J. Mater. Sci., 31, 4817 – 29 ( 1996 ).en_US
dc.identifier.citedreferenceT. C. Totemeier and J. E. King, “ Isothermal Fatigue of an Aluminide‐Coated Single‐Crystal Superalloy: Part II. Effects of Brittle Precracking,” Metall. Mater. Trans., 27A, 353 – 61 ( 1996 ).en_US
dc.identifier.citedreferenceJ. S. Crompton and J. W. Martin, “ Crack Growth in a Single Crystal Superalloy at Elevated Temperature,” Metall. Trans., 15A, 1711 – 9 ( 1984 ).en_US
dc.identifier.citedreferenceH. Zhou, H. Harada, Y. Ro, and I. Okada, “ Investigations on the Thermo‐Mechanical Fatigue of Two Ni‐Based Single Crystal Superalloys,” Mater. Sci. Eng., A, 161 – 7 ( 2005 ).en_US
dc.identifier.citedreferenceN. Isobe and S. Sakurai, “ Compressive Strain Hold Effect on High Temperature Low‐Cycle Fatigue Crack Growth in Superalloys,” Mater. Sci. Res. Int., 9, 29 – 33 ( 2003 ).en_US
dc.identifier.citedreferenceR. Nutzl, E. Affeldt, and M. Goken, “ Damage Evolution During Thermomechanical Fatigue of a Coated Monocrystalline Nickel‐Base Superalloy,” Intl. J. Fatigue, 30, 314 – 7 ( 2008 ).en_US
dc.identifier.citedreferenceY. H. Zhang, D. M. Knowles, and P. J. Withers, “ Micromechanics of Failure of Aluminide Coated Single Crystal Ni Superalloy Under Thermomechanical Fatigue,” Scr. Mater., 37, 815 – 20 ( 1997 ).en_US
dc.identifier.citedreferenceE. Fluery and L. Remy, “ Behavior of Nickel‐Base Superalloy Single Crystals Under Thermomechanical Fatigue,” Metall. Mater. Trans., 25A, 99 – 109 ( 1994 ).en_US
dc.identifier.citedreferenceM. Y. He and A. G. Evans, “ A Model for Oxidation‐Assisted Low Cycle Fatigue of Superalloys,” Acta Mater., 58, 583 – 91 ( 2010 ).en_US
dc.identifier.citedreferenceJ. A. Nychka and D. R. Clarke, “ Quantification of Aluminum Outward Diffusion During Oxidation of FeCrAlY Alloys,” Oxidation Metals, 63 [5–6] 325 – 52 ( 2005 ).en_US
dc.identifier.citedreferenceV. K. Tolpygo and D. R. Clarke, “ Microstructural Evidence for Counter‐Diffusion of Aluminum and Oxygen during the Growth of Alumina Scales,” Mater. High Temp., 20, 261 – 71 ( 2003 ).en_US
dc.identifier.citedreferenceV. K. Tolpygo and D. R. Clarke, “ Oxidation‐Induced Failure of BPVD Thermal Barrier Coatings,” Surf. Coat. Tech., 146–147, 124 – 31 ( 2001 ).en_US
dc.identifier.citedreferenceD. S. Balint and J. W. Hutchinson, “ An Analytical Model of Rumpling in Thermal Barrier Coatings,” J. Mech. Phys. Solids, 53, 949 – 73 ( 2005 ).en_US
dc.identifier.citedreferenceA. W. Davis and A. G. Evans, “ Some Effects of Imperfection Geometry on the Cyclic Distortion of Thermally Grown Oxides,” Oxidation Metals, 1573 – 4889 ( 2006 ).en_US
dc.identifier.citedreferenceA. M. Karlsson, J. W. Hutchinson, and A. G. Evans, “ A Fundamental Model of Cyclic Instabilities in Thermal Barrier Systems,” J. Mech. Phys. Solids, 50, 1565 – 89 ( 2002 ).en_US
dc.identifier.citedreferenceA. H. Heuer, A. Reddy, D. B. Hovis, B. Veal, A. Paulikas, A. Vlad, and M. Rühle, “ The Effect of Surface Orientation on Oxidation‐Induced Growth Strains in a Model NiCrAlY Bond Coat Alloy,” Scr. Mater., 54, 1907 – 12 ( 2006 ).en_US
dc.identifier.citedreferenceD. Hovis, L. Hu, A. Reddy, A. H. Heuer, A. P. Paulikas, and B. W. Veal, “ In‐Situ Studies of TGO Growth Stresses and the Martensitic Transformation in the B2 Phase in Commercial Pt‐Modified NiAl and NiCoCrAlY Bond Coat Alloys,” Intl. J. Mater. Res., 98, 1209 – 13 ( 2007 ).en_US
dc.identifier.citedreferenceB. W. Veal, A. P. Paulikas, B. Gleeson, and P. Y. Hou, “ Creep in α‐Al 2 O 3 Thermally Grown on β‐NiAl and NiAlPt Alloys,” Surf. Coat. Tech., 202, 608 – 12 ( 2007 ).en_US
dc.identifier.citedreferenceB. Tryon, K. S. Murphy, C. G. Levi, J. Yang, and T. M. Pollock, “ Hybrid Intermetallic Ru/Pt‐modified Bond Coatings for Thermal Barrier Systems,” Surf. Coat. Tech., 202, 349 – 61 ( 2007 ).en_US
dc.identifier.citedreferenceT. M. Pollock and R. D. Field, “ Dislocations and High Temperature Plastic Deformation of Superalloy Single Crystals ”; pp. 547 – 618 in Dislocations in Solids, Vol 11, Edited by F. R. N. Nabarro, and M. S. Duesbery. Elsevier, Amsterdam, 2002.en_US
dc.identifier.citedreferenceD. Pan, M. W. Chen, P. K. Wright, and K. J. Hemker, “ Evolution of a Diffusion Aluminide Bond Coat for Thermal Barrier Coatings During Thermal Cycling,” Acta Mater., 51, 2205 – 17 ( 2003 ).en_US
dc.identifier.citedreferenceJ. S. Van Sluytman, A. Suzuki, R. Helmik, A. Bolcavage, and T. M. Pollock, “ Gamma Prime Morphology and Creep Properties of Nickel‐Base Superalloys with Platinum Group Metal Additions ”; pp. 499 – 507 in Superalloys 2008, Edited by R. C. Reed, K. A. Green, P. Caron, T. P. Gabb, M. G. Fahrmann, E. S. Huron, and S. R. Woodard TMS, Warrendale, PA, 2008.en_US
dc.identifier.citedreferenceP. Y. Hou, A. P. Paulikas, and B. W. Veal, “ Growth Strains in Thermally Grown Al 2 O 3 Scales Studied Using Synchrotron Radiation,” JOM, 61, 51 – 5 ( 2009 ).en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.