Show simple item record

Fungal community composition and function after long‐term exposure of northern forests to elevated atmospheric CO 2 and tropospheric O 3

dc.contributor.authorEdwards, Ivan P.en_US
dc.contributor.authorZak, Donald R.en_US
dc.date.accessioned2011-11-10T15:39:06Z
dc.date.available2012-07-12T17:42:24Zen_US
dc.date.issued2011-06en_US
dc.identifier.citationEdwards, Ivan P. ; Zak, Donald R. (2011). "Fungal community composition and function after longâ term exposure of northern forests to elevated atmospheric CO 2 and tropospheric O 3 ." Global Change Biology 17(6). <http://hdl.handle.net/2027.42/87135>en_US
dc.identifier.issn1354-1013en_US
dc.identifier.issn1365-2486en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87135
dc.description.abstractThe long‐term effects of rising atmospheric carbon dioxide (CO 2 ) and tropospheric O 3 concentrations on fungal communities in soil are not well understood. Here, we examine fungal community composition and the activities of cellobiohydrolase and N ‐acetylglucosaminidase (NAG) after 10 years of exposure to 1.5 times ambient levels of CO 2 and O 3 in aspen and aspen–birch forest ecosystems, and compare these results to earlier studies in the same long‐term experiment. The forest floor community was dominated by saprotrophic fungi, and differed slightly between plant community types, as did NAG activity. Elevated CO 2 and O 3 had small but significant effects on the distribution of fungal genotypes in this horizon, and elevated CO 2 also lead to an increase in the proportion of Sistotrema spp. within the community. Yet, although cellobiohydrolase activity was lower in the forest floor under elevated O 3 , it was not affected by elevated CO 2 . NAG was also unaffected. The soil community was dominated by ectomycorrhizal species. Both CO 2 and O 3 had a minor effect on the distribution of genotypes; however, phylogenetic analysis indicated that under elevated O 3 Cortinarius and Inocybe spp. increased in abundance and Laccaria and Tomentella spp. declined. Although cellobiohydrolase activity in soil was unaffected by either CO 2 or O 3 , NAG was higher (∼29%) under CO 2 in aspen–birch, but lower (∼18%) under aspen. Time series analysis indicated that CO 2 increased cellulolytic enzyme activity during the first 5 years of the experiment, but that the magnitude of this effect diminished over time. NAG activity also showed strong early stimulation by elevated CO 2 , but after 10 years this effect is no longer evident. Elevated O 3 appears to have variable stimulatory and repressive effects depending on the soil horizon and time point examined.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherElevated Carbon Dioxideen_US
dc.subject.otherElevated Ozoneen_US
dc.subject.otherEnzyme Activitiesen_US
dc.subject.otherFACEen_US
dc.subject.otherFungal Communitiesen_US
dc.subject.otherLong‐Termen_US
dc.titleFungal community composition and function after long‐term exposure of northern forests to elevated atmospheric CO 2 and tropospheric O 3en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources & Environment, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87135/1/j.1365-2486.2010.02376.x.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87135/2/GCB_2376_sm_suppinfo_figure-s1-s5.pdf
dc.identifier.doi10.1111/j.1365-2486.2010.02376.xen_US
dc.identifier.sourceGlobal Change Biologyen_US
dc.identifier.citedreferenceAndersen CP ( 2003 ) Source‐sink balance and carbon allocation below ground in plants exposed to ozone. New Phytologist, 157, 213 – 228.en_US
dc.identifier.citedreferenceAndrew C, Lilleskov EA ( 2009 ) Productivity and community structure of ectomycorrhizal fungal sporocarps under increased atmospheric CO 2 and O 3. Ecology Letters, 12, 1 – 10.en_US
dc.identifier.citedreferenceChung H, Zak DR, Lilleskov EA ( 2006 ) Fungal community composition and metabolism under elevated CO 2 and O 3. Oecologia, 147, 143 – 154.en_US
dc.identifier.citedreferenceColwell RK ( 2009 ) EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.2. User's Guide and application. Available at: http://purl.oclc.org/estimates (accessed 15 August 2010).en_US
dc.identifier.citedreferenceCotrufo MF, Ineson P ( 1996 ) Elevated CO 2 reduces field decomposition rates of Betula pendula (Roth.) leaf litter. Oecologia, 106, 525 – 530.en_US
dc.identifier.citedreferenceDelucia EH, Hamilton JG, Naidu SL et al. ( 1999 ) Net primary production of an ecosystem with experimental CO 2 enrichment. Science, 284, 1177 – 1179.en_US
dc.identifier.citedreferenceDickson RE, Lewin KF, Isebrands JG et al. ( 2000 ) General Technical Report NC‐214. USDA Forest Service North Central Experiment Station.en_US
dc.identifier.citedreferenceEdwards IP, Zak DR ( 2010 ) Phylogenetic similarity and structure of Agaricomycotina communities across a forested landscape. Molecular Ecology, 19, 1469 – 1482.en_US
dc.identifier.citedreferenceFinlayson‐Pitts BJ, Pitts JN Jr ( 1997 ) Tropospheric air pollution: ozone, airborne toxic, polycyclic aromatics and particles. Science, 276, 1045 – 1052.en_US
dc.identifier.citedreferenceFrankland FC ( 1998 ) Fungal succession – unraveling the unpredictable. Mycological Research, 102, 1 – 15.en_US
dc.identifier.citedreferenceFransson PM, Taylor AFS, Finlay RD ( 2001 ) Elevated atmospheric CO 2 alters root symbiont community structure in forest trees. New Phytologist, 152, 431 – 442.en_US
dc.identifier.citedreferenceGodbold DL, Berntson GM, Bazzaz FA ( 1997 ) Growth and mycorrhizal colonization of three North American tree species under elevated atmospheric CO 2. New Phytologist, 137, 433 – 440.en_US
dc.identifier.citedreferenceGorissen A, Kuyper TW ( 2000 ) Fungal species‐specific responses of ectomycorrhizal Scots pine ( Pinus sylvestris ) to elevated [CO 2 ]. New Phytologist, 146, 163 – 168.en_US
dc.identifier.citedreferenceGrebenc T, Kraigher H ( 2007 ) Changes in the community of ectomycorrhizal fungi and increased fine root number under adult beech trees chronically fumigated with double ambient ozone concentration. Plant Biology, 9, 279 – 287.en_US
dc.identifier.citedreferenceHall MC, Stiling P, Moon DC, Drake BG, Hunter MD ( 2006 ) Elevated CO 2 increases the long‐term decomposition rate of Quercus myrtifolia leaf litter. Global Change Biology, 12, 568 – 577.en_US
dc.identifier.citedreferenceHibbett DS ( 2006 ) A Phylogenetic overview of the Agaricomycotina. Mycologia, 98, 917 – 925.en_US
dc.identifier.citedreferenceHopple J, Vilgalys R ( 1994 ) Phylogenetic relationships among coprinoid taxa and allies based on data from restriction site mapping of nuclear rDNA. Mycologia, 86, 96 – 107.en_US
dc.identifier.citedreferenceIPCC ( 2007 ) Changes in atmospheric constituents and in radioactive forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL ), Cambridge University Press, Cambridge, UK.en_US
dc.identifier.citedreferenceKang H, Freeman C, Park SS, Chun J ( 2005 ) N ‐Acetylglucosaminidase activities in wetlands: a global survey. Hydrobiologia, 532, 103 – 110.en_US
dc.identifier.citedreferenceKarnosky DF ( 1996 ) Photosynthetic responses of aspen clones to simultaneous exposures of ozone and CO 2. Canadian Journal of Forest Research, 26, 639 – 648.en_US
dc.identifier.citedreferenceKarnosky DF, Zak DR, Pregitzer KS et al. ( 2003 ) Tropospheric O 3 moderates responses of temperate hardwood forests to elevated CO 2 a synthesis of molecular to ecosystem results from the Aspen FACE project. Functional Ecology, 17, 289 – 304.en_US
dc.identifier.citedreferenceKasurinen A, Helmisaari H‐S, Holopainen T ( 1999 ) The influence of elevated CO 2 and O 3 on fine roots and mycorrhizas of naturally growing young Scots pine trees during three exposure years. Global Change Biology, 5, 771 – 780.en_US
dc.identifier.citedreferenceKasurinen A, Keinänen MM, Kaipainene S, Nilsson L‐O, Vapaavuori E, Kontro MH, Holopainen T ( 2005 ) Below‐ground responses of silver birch trees exposed to elevated CO 2 and O 3 levels during three growing seasons. Global Change Biology, 11, 1167 – 1179.en_US
dc.identifier.citedreferenceKatoh K, Misawa K, Kuma K‐I, Miyata T ( 2002 ) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059 – 3066.en_US
dc.identifier.citedreferenceKing JS, Kubiske ME, Pregitzer KS et al. ( 2005 ) Tropospheric O 3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO 2. New Phytologist, 168, 623 – 636.en_US
dc.identifier.citedreferenceKubiske ME, Pregitzer KS, Zak DR, Mikan CJ ( 1998 ) Growth and C allocation of Populus tremuloides genotypes in response to atmospheric CO 2 and soil N availability. New Phytologist, 140, 251 – 260.en_US
dc.identifier.citedreferenceLarson JL, Zak DR, Sinsabaugh RL ( 2002 ) Microbial activity beneath temperate trees growing under elevated CO 2 and O 3. Soil Science Society of America Journal, 66, 1848 – 1856.en_US
dc.identifier.citedreferenceLindahl BO, Ihrmark K, Boberg J et al. ( 2007 ) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist, 173, 611 – 620.en_US
dc.identifier.citedreferenceLindroth RL, Kopper BJ, Parsons WFJ et al. ( 2001 ) Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen ( Populus tremuloides ) and Betula papyrifera. Environmental Pollution, 115, 395 – 404.en_US
dc.identifier.citedreferenceLiu L, King JS, Giardina CP ( 2005 ) Effects of elevated concentrations of atmospheric CO 2 and tropospheric O 3 on leaf litter production and chemistry in trembling aspen and paper birch communities. Tree Physiology, 25, 1511 – 1522.en_US
dc.identifier.citedreferenceLodge DJ, Cantrell S ( 1995 ) Fungal communities in wet tropical forests: variation in time and space. Canadian Journal of Botany, 73 (Suppl. 1), S1391 – S1398.en_US
dc.identifier.citedreferenceLozupone C, Knight R ( 2005 ) UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology, 71, 8228 – 8235.en_US
dc.identifier.citedreferenceManly BFJ ( 1991 ) Randomization and Monte Carlo Methods in Biology. Chapman & Hall, London.en_US
dc.identifier.citedreferenceMartin KJ, Rygiewicz PT ( 2005 ) Fungal‐specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiology, 5, 28.en_US
dc.identifier.citedreferenceMiller MA, Holder MT, Vos R et al. The CIPRES Portals. CIPRES. Available at http://www.phylo.org/sub_sections/portal (accessed 4 August 2009).en_US
dc.identifier.citedreferenceO'Brien HE, Parrent JL, Jackson JA, Monclavo J‐M, Vilgalys R ( 2005 ) Fungal community analysis by large‐scale sequencing of environmental samples. Applied and Environmental Microbiology, 71, 5540 – 5550.en_US
dc.identifier.citedreferenceParrent JL, Morris WF, Vilgalys R ( 2006 ) CO 2 ‐enrichment and nutrient availability alter ectomycorrhizal fungal communities. Ecology, 87, 2278 – 2287.en_US
dc.identifier.citedreferenceParrent JL, Vilgalys R ( 2007 ) Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO 2 and nitrogen fertilization. New Phytologist, 176, 164 – 174.en_US
dc.identifier.citedreferenceParsons WFJ, Lindroth RL, Bockheim JG ( 2004 ) Decomposition of Betula papyrifera leaf litter under the independent and interactive effects of elevated CO 2 and O 3. Global Change Biology, 10, 1666 – 1677.en_US
dc.identifier.citedreferencePoorter H, Roumet C, Campbell BD ( 1996 ) Interspecific variation in the growth response of plants to elevated CO 2: a search for functional types. In: Carbon dioxide, Populations, and Communities (eds Korner C, Bazzaz FA ), pp. 375 – 412. Academic Press Inc., London, UK.en_US
dc.identifier.citedreferencePregitzer KS, Burton AJ, King JS, Zak DR ( 2008 ) Soil respiration, root biomass, and root turnover following long‐term exposure of northern forests to elevated atmospheric CO 2 and tropospheric O 3. New Phytologist, 180, 153 – 161.en_US
dc.identifier.citedreferenceSaiya‐Cork KR, Sinsabaugh RL, Zak DR ( 2002 ) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 34, 1309 – 1315.en_US
dc.identifier.citedreferenceSchloss PD, Handelsman J ( 2005 ) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied and Environmental Microbiology, 71, 1501 – 1506.en_US
dc.identifier.citedreferenceSpatafora JW, Johnson D, Sung G‐H et al. ( 2006 ) A five‐gene phylogenetic analysis of the Pezizomycotina. Mycologia, 98, 1020 – 1030.en_US
dc.identifier.citedreferenceStamatakis A, Ludwig T, Meier H ( 2005 ) RAxML‐III: a fast program for maximum likelihood‐based inference of large phylogenetic trees. Bioinformatics, 21, 456 – 463.en_US
dc.identifier.citedreferenceStrnadová V, Hršelová H, Kolaøík M, Gryndler M ( 2004 ) Response of saprotrophic microfungi degrading the fulvic fraction of soil organic matter to different N fertilization intensities, different plant species cover and elevated atmospheric CO 2 concentration. Folia Microbiologica, 49, 563 – 568.en_US
dc.identifier.citedreferenceTalhelm AF, Pregitzer KS, Zak DR ( 2009 ) Species‐specific responses to atmospheric carbon dioxide and tropospheric ozone mediate changes in soil carbon. Ecology Letters, 12, 1 – 10.en_US
dc.identifier.citedreferenceTamura K, Dudley J, Nei M, Kumar S ( 2007 ) MEGA4: molecular evolutionary genetics analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution, 24, 1596 – 1599.en_US
dc.identifier.citedreferenceTer Braak CJF ( 1987 ) The analysis of vegetation–environment relationships by canonical correspondence analysis. Vegetatio, 69, 69 – 77.en_US
dc.identifier.citedreferenceTreseder KK ( 2004 ) A meta‐analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO 2 in field studies. New Phytologist, 164, 347 – 355.en_US
dc.identifier.citedreferenceZak DR, Holmes WE, Pregitzer KS, King JS, Ellsworth DS, Kubiske ME ( 2007 ) Belowground competition and the response of developing forest communities to atmospheric CO 2 and O 3. Global Change Biology, 13, 2230 – 2238.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.