Show simple item record

Differential profiling studies of N‐linked glycoproteins in glioblastoma cancer stem cells upon treatment with γ‐secretase inhibitor

dc.contributor.authorKovarova, Hanaen_US
dc.contributor.authorJivan Gadher, Sureshen_US
dc.contributor.authorWollscheid, Bernden_US
dc.date.accessioned2011-11-10T15:39:14Z
dc.date.available2012-12-03T21:17:30Zen_US
dc.date.issued2011-10en_US
dc.identifier.citationKovarova, Hana; Jivan Gadher, Suresh; Wollscheid, Bernd (2011). "Differential profiling studies of N‐linked glycoproteins in glioblastoma cancer stem cells upon treatment with γ‐secretase inhibitor ." PROTEOMICS 11(20): 4021-4028. <http://hdl.handle.net/2027.42/87140>en_US
dc.identifier.issn1615-9853en_US
dc.identifier.issn1615-9861en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87140
dc.description.abstractWe have recently demonstrated that Notch pathway blockade by γ‐secretase inhibitor (GSI) depletes cancer stem cells (CSCs) in Glioblastoma Multiforme (GBM) through reduced proliferation and induced apoptosis. However, the detailed mechanism by which the manipulation of Notch signal induces alterations on post‐translational modifications such as glycosylation has not been investigated. Herein, we present a differential profiling work to detect the change of glycosylation pattern upon drug treatment in GBM CSCs. Rapid screening of differential cell surface glycan structures has been performed by lectin microarray on live cells followed by the detection of N‐linked glycoproteins from cell lysates using multi‐lectin chromatography and label‐free quantitative mass spectrometry analysis. A total of 51 and 52 glycoproteins were identified in the CSC‐ and GSI‐treated groups, respectively, filtered by a combination of decoy database searching and Trans‐Proteomic Pipeline (TPP) processing. Although no significant changes were detected from the lectin microarray experiment, 7 differentially expressed glycoproteins with high confidence were captured after the multi‐lectin column including key enzymes involved in glycan processing. Functional annotations of the altered glycoproteins suggest a phenotype transformation of CSCs toward a less tumorigenic form upon GSI treatment.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherCancer Stem Cellsen_US
dc.subject.otherGliobastomaen_US
dc.subject.otherGlycoproteomicsen_US
dc.subject.otherLabel‐Freeen_US
dc.subject.otherLectin Microarrayen_US
dc.subject.otherMulti‐Lectin Chromatographyen_US
dc.titleDifferential profiling studies of N‐linked glycoproteins in glioblastoma cancer stem cells upon treatment with γ‐secretase inhibitoren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumProgram of Bioinformatics, University of Michigan Medical Center, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Neurosurgery University of Michigan Medical Center, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumCell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumMaude T. Lane Professor of Surgery, University of Michigan Medical Center, Department of Surgery, 1150 W. Medical Center Drive, MSRB I, A510B, Ann Arbor, MI 48109‐0650, USA Fax: +1‐734‐615‐2088en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87140/1/4021_ftp.pdf
dc.identifier.doi10.1002/pmic.201100014en_US
dc.identifier.sourcePROTEOMICSen_US
dc.identifier.citedreferenceVescovi, A. L., Galli, R., Reynolds, B. A., Brain tumour stem cells. Nat. Rev. Cancer 2006, 6, 425 – 436.en_US
dc.identifier.citedreferenceRead, T. A., Fogarty, M., Markant, S. L., McLendon, R. E. et al., Identification of CD15 as a marker for tumor‐propagating cells in a mouse model of medulloblastoma. Cancer Cell 2009, 15, 135 – 147.en_US
dc.identifier.citedreferenceWard, R. J., Lee, L., Graham, K., Satkunendran, T. et al., Multipotent CD15+ cancer stem cells in patched‐1‐deficient mouse medulloblastoma. Cancer Res. 2009, 69, 4682 – 4690.en_US
dc.identifier.citedreferenceSon, M. J., Woolard, K., Nam, D. H., Lee, J., Fine, H. A., SSEA‐1 is an enrichment marker for tumor‐initiating cells in human glioblastoma. Cell Stem Cell 2009, 4, 440 – 452.en_US
dc.identifier.citedreferenceGilbert, C. A., Ross, A. H., Cancer stem cells: cell culture, markers, and targets for new therapies. J. Cell Biochem. 2009, 108, 1031 – 1038.en_US
dc.identifier.citedreferenceStockhausen, M. T., Kristoffersen, K., Poulsen, H. S., The functional role of Notch signaling in human gliomas. Neuro Oncol. 2010, 12, 199 – 211.en_US
dc.identifier.citedreferenceFan, X., Khaki, L., Zhu, T. S., Soules, M. E. et al., NOTCH pathway blockade depletes CD133‐positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 2010, 28, 5 – 16.en_US
dc.identifier.citedreferenceFan, X., Matsui, W., Khaki, L., Stearns, D. et al., Notch pathway inhibition depletes stem‐like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 2006, 66, 7445 – 7452.en_US
dc.identifier.citedreferenceFan, X., Eberhart, C. G., Medulloblastoma stem cells. J. Clin. Oncol. 2008, 26, 2821 – 2827.en_US
dc.identifier.citedreferenceStanley, P., Regulation of Notch signaling by glycosylation. Curr. Opin. Struct. Biol. 2007, 17, 530 – 535.en_US
dc.identifier.citedreferenceJafar‐Nejad, H., Leonardi, J., Fernandez‐Valdivia, R., Role of glycans and glycosyltransferases in the regulation of Notch signaling. Glycobiology 2010, 20, 931 – 949.en_US
dc.identifier.citedreferenceTakeuchi, H. H. R., Role of glycosylation of Notch in development. Semin. Cell Dev. Biol. 2010, 21, 638 – 645.en_US
dc.identifier.citedreferenceTomita, T., Katayama, R., Takikawa, R., Iwatsubo, T., Complex N‐glycosylated form of nicastrin is stabilized and selectively bound to presenilin fragments. FEBS Lett. 2002, 520, 117 – 121.en_US
dc.identifier.citedreferenceZhang, H., Li, X. J., Martin, D. B., Aebersold, R., Identification and quantification of N‐linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. 2003, 21, 660 – 666.en_US
dc.identifier.citedreferenceChen, R., Jiang, X., Sun, D., Han, G. et al., Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J. Proteome Res. 2009, 8, 651 – 661.en_US
dc.identifier.citedreferenceXiong, L., Andrews, D., Regnier, F., Comparative proteomics of glycoproteins based on lectin selection and isotope coding. J. Proteome Res. 2003, 8, 651 – 661.en_US
dc.identifier.citedreferenceKaji, H., Saito, H., Yamauchi, Y., Shinkawa, T. et al., Lectin affinity capture, isotope‐coded tagging and mass spectrometry to identify N‐linked glycoproteins. Nat. Biotechnol. 2003, 21, 667 – 672.en_US
dc.identifier.citedreferenceYang, Z., Hancock, W. S., Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi‐lectin affinity column. J. Chromatogr. A 2004, 1053, 79 – 88.en_US
dc.identifier.citedreferenceYang, Z., Hancock, W. S., Monitoring glycosylation pattern changes of glycoproteins using multi‐lectin affinity chromatography. J. Chromatogr. A 2005, 1070, 57 – 64.en_US
dc.identifier.citedreferenceOrazine, C. I., Hincapie, M., Hancock, W. S., Hattersley, M., Hanke, J. H., A proteomic analysis of the plasma glycoproteins of a MCF‐7 mouse xenograft: a model system for the detection of tumor markers. J. Proteome Res. 2008, 7, 1542 – 1554.en_US
dc.identifier.citedreferenceLee, H. J., Na, K., Choi, E. Y., Kim, K. S. et al., Simple method for quantitative analysis of N‐linked glycoproteins in hepatocellular carcinoma specimens. J. Proteome Res. 2010, 9, 308 – 318.en_US
dc.identifier.citedreferencePilobello, K. T., Slawek, D., Mahal, L. K., A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. Proc. Natl. Acad. Sci. USA 2007, 104, 11534 – 11539.en_US
dc.identifier.citedreferenceTao, S. C., Li, Y., Zhou, J., Qian, J. et al., Lectin microarrays identify cell‐specific and functionally significant cell surface glycan workers. Glycobiology 2008, 18, 761 – 769.en_US
dc.identifier.citedreferenceHe, J., Liui, Y., Xie, X., Zhu, T. et al., Identification of cell surface glycoprotein markers for glioblastoma‐derived stem‐like cells using a lectin microarray and LC‐MS/MS approach. J. Proteome Res. 2010, 9, 2565 – 2572.en_US
dc.identifier.citedreferenceGalli, R., Binda, E., Orfanelli, U., Cipelletti, B. et al., Isolation and characterization of tumorigenic, stem‐like neural precursors from human glioblastoma. Cancer Res. 2004, 64, 7011 – 7021.en_US
dc.identifier.citedreferenceDai, L., Li, C., Shedden, K. A., Misek, D. E., Lubman, D. M., Comparative proteomic study of two closely related ovarian endometrioid adenocarcinoma cell lines using cIEF fractionation and pathway analysis. Electrophoresis 2009, 30, 1119 – 1131.en_US
dc.identifier.citedreferenceDai, L., Li, C., Shedden, K. A., Lee, C. J. et al., Quantitative proteomic profiling studies of pancreatic cancer stem cells. J. Proteome Res. 2010, 9, 3394 – 3402.en_US
dc.identifier.citedreferenceHe, J., Liu, Y., Zhu, T. S., Xie, X. et al., Glycoproteomic analysis of glioblastoma stem cell differentiation. J. Proteome Res. 2011, 10, 330 – 338.en_US
dc.identifier.citedreferenceKukkola, L., Hieta, R., Kivirikko, K. I., Myllyharju, J., Identification and characterization of a third human, rat, and mouse collagen prolyl 4‐hydroxylase isoenzyme. J. Biol. Chem. 2003, 278, 47685 – 47693.en_US
dc.identifier.citedreferenceJensen, L. J., Kuhn, M., Stark, M., Chaffron, S. et al., STRING 8 – a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2009, 37, D412 – D416.en_US
dc.identifier.citedreferenceSantamaria, R., Chabás, A., Callahan, J. W., Grinberg, D., Vilageliu, L., Expression and characterization of 14 GLB1 mutant alleles found in GM1‐gangliosidosis and Morquio B patients. J. Lipid Res. 2007, 48, 2275 – 2282.en_US
dc.identifier.citedreferencePelletier, M. F., Marsil, A., Sevigny, G., Jakob, C.A. et al., The heterodimeric structure of glucosidase II is required for its activity, solubility, and localization in vivo. Glycobiology 2000, 10, 815 – 827.en_US
dc.identifier.citedreferenceMartiniuk, F., Ellenbogen, A., Hirschhorn, R., Identity of neutral alpha‐glucosidase AB and the glycoprotein processing enzyme glucosidase II. Biochemical and genetic studies. J. Biol. Chem. 1985, 260, 1238 – 1242.en_US
dc.identifier.citedreferenceHeyworth, C. M., Wynn, C., The binding of human liver acid beta‐galactosidase to wheat‐germ lectin is influenced by aggregation state of the enzyme. Biochem. J. 1982, 201, 615 ‐ 619.en_US
dc.identifier.citedreferenceMéndez, O., Zavadil, J., Esencay, M., Lukyanov, Y. et al., Knock down of HIF‐1alpha in glioma cells reduces migration in vitro and invasion in vivo and impairs their ability to form tumor spheres. Mol. Cancer 2010, 9, 133.en_US
dc.identifier.citedreferenceGustafsson, M. V., Zheng, X., Pereira, T., Gradin, K. et al., Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev. Cell 2005, 9, 617 – 628.en_US
dc.identifier.citedreferenceJournet, A., C.hapel, A., Jehan, S., Adessi, C. et al., Characterization of Dictyostelium discoideum cathepsin D. J. Cell Sci. 1999, 112, 3833 – 3843.en_US
dc.identifier.citedreferenceSrivastava, P. N., Ninjoor, V., Isolation of rabbit testicular cathepsin D and its role in the activation of proacrosin. Biochem. Biophys. Res. Commun. 1982, 109, 63 – 69.en_US
dc.identifier.citedreferenceLiaudet‐Coopman, E., Beaujouin, M., Derocq, D., Garcia, M. et al., Cathepsin D: newly discovered functions of a long‐standing aspartic protease in cancer and apoptosis. Cancer Lett. 2006, 237, 167 – 179.en_US
dc.identifier.citedreferenceBerchem, G., Glondu, M., Gleizes, M., Brouillet, J. P. et al., Cathepsin‐D affects multiple tumor progression steps in vivo: proliferation, angiogenesis and apoptosis. Oncogene 2002, 21, 5951 – 5955.en_US
dc.identifier.citedreferenceTamaki, K., Heterogeneity of epidermal Thy‐1‐positive cells defined by lectin‐binding sites. J. Invest. Dermatol. 1986, 86, 222 – 225.en_US
dc.identifier.citedreferenceAbeysinghe, H. R., Cao, Q., Xu, J., Pollock, S., et al., THY1 expression is associated with tumor suppression of human ovarian cancer. Cancer Genet. Cytogenet. 2003, 143, 125 – 132.en_US
dc.identifier.citedreferenceAbeysinghe, H. R., Pollock, S., Guckert, N. L., Veyberman, Y. et al., The role of the THY1 gene in human ovarian cancer suppression based on transfection studies. Cancer Genet. Cytogenet. 2004, 149, 1 – 10.en_US
dc.identifier.citedreferenceLung, H. L., Bangarusamy, D., Xie, D., Cheung, A. K. et al., THY1 is a candidate tumour suppressor gene with decreased expression in metastatic nasopharyngeal carcinoma. Oncogene 2005, 24, 6525 – 6532.en_US
dc.identifier.citedreferenceZeger, S. L., Karim, M. R., Generalized linear models with random effects; a Gibbs sampling approach. J. Am. Stat. Assoc. 1991. 86, 79 – 86.en_US
dc.identifier.citedreferenceMcDonald, C. A., Yang, J., Marathe, V., Yen, T. Y., Macher, B. A., Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome. Mol. Cell. Proteomics 2009, 8, 287 – 301.en_US
dc.identifier.citedreferenceLim, J., Hao, T., Shaw, C., Patel, A. J. et al., Protein–protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 2006, 125, 801 – 814.en_US
dc.identifier.citedreferenceJin, J., Smith, F., Stark, C., Wells, C. D. et al., Proteomic, functional, and domain‐based analysis of in vivo 14‐3‐3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr. Biol. 2004, 14, 1436 – 1450.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.