Show simple item record

Spatially adaptive semi‐supervised learning with Gaussian processes for hyperspectral data analysis

dc.contributor.authorJun, Gooen_US
dc.contributor.authorGhosh, Joydeepen_US
dc.date.accessioned2011-11-10T15:39:27Z
dc.date.available2012-10-01T18:34:51Zen_US
dc.date.issued2011-08en_US
dc.identifier.citationJun, Goo; Ghosh, Joydeep (2011). "Spatially adaptive semi‐supervised learning with Gaussian processes for hyperspectral data analysis." Statistical Analysis and Data Mining 4(4): 358-371. <http://hdl.handle.net/2027.42/87150>en_US
dc.identifier.issn1932-1864en_US
dc.identifier.issn1932-1872en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87150
dc.description.abstractThis paper presents a semi‐supervised learning algorithm called Gaussian process expectation‐maximization (GP‐EM), for classification of landcover based on hyperspectral data analysis. Model parameters for each land cover class are first estimated by a supervised algorithm using Gaussian process regressions to find spatially adaptive parameters, and the estimated parameters are then used to initialize a spatially adaptive mixture‐of‐Gaussians model. The mixture model is updated by expectation‐maximization iterations using the unlabeled data, and the spatially adaptive parameters for unlabeled instances are obtained by Gaussian process regressions with soft assignments. Spatially and temporally distant hyperspectral images taken from the Botswana area by the NASA EO‐1 satellite are used for experiments. Detailed empirical evaluations show that the proposed framework performs significantly better than all previously reported results by a wide variety of alternative approaches and algorithms on the same datasets. © 2011 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 4: 358–371, 2011en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherSemi‐Supervised Learningen_US
dc.subject.otherGaussian Processesen_US
dc.subject.otherHyperspectral Dataen_US
dc.subject.otherSpatial Statisticsen_US
dc.titleSpatially adaptive semi‐supervised learning with Gaussian processes for hyperspectral data analysisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDept. of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDept. of Electrical and Computer Engineering, University of Texas, Austin, TX 78712, USAen_US
dc.contributor.affiliationotherDept. of Electrical and Computer Engineering, University of Texas, Austin, TX 78712, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87150/1/10119_ftp.pdf
dc.identifier.doi10.1002/sam.10119en_US
dc.identifier.sourceStatistical Analysis and Data Miningen_US
dc.identifier.citedreferenceD. Landgrebe, Hyperspectral image data analysis as a high dimensional signal processing problem, Sig Process Mag 19 ( 2002 ), (1) 17 – 28. Jan.en_US
dc.identifier.citedreferenceR. Vatsavai, S. Shekhar, and B. Bhaduri, A Semi‐supervised Learning Algorithm for Recognizing Sub‐classes, In IEEE International Conference on Data Mining Workshops (ICDMW 08), 2008.en_US
dc.identifier.citedreferenceS. Rajan, J. Ghosh, and M. M. Crawford, Exploiting class hierarchies for knowledge transfer in hyperspectral data, IEEE Trans Geosci Remote Sens 44 (11) ( 2006 ), 3408 – 3417.en_US
dc.identifier.citedreferenceN. Cressie, Statistics for Spatial Data, New York, Wiley, 1993.en_US
dc.identifier.citedreferenceC. E. Rasmussen, and C. K. I. Williams, Gaussian Processes for Machine Learning, The MIT Press, Cambridge, Massachusetts, 2005.en_US
dc.identifier.citedreferenceG. Jun, and J. Ghosh, Spatially adaptive classification of hyperspectral data with Gaussian processes, In IEEE International Geoscience and Remote Sensing Symposium (IGARSS 09), 2009.en_US
dc.identifier.citedreferenceM. Dundar, and D. Landgrebe, A model‐based mixture‐supervised classification approach in hyperspectral data analysis, IEEE Trans Geosci Remote Sens 40 (12) ( 2002 ), 2692 – 2699.en_US
dc.identifier.citedreferenceA. Plaza, J. Benediktsson, J. Boardman, J. Brazile, L. Bruzzone, G. Camps‐Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J.C. Tilton, and G. Trianni, Recent advances in techniques for hyperspectral image processing, Remote Sens Environ 113 ( 2009 ), S110 – S122.en_US
dc.identifier.citedreferenceF. Melgani, and L. Bruzzone, Classification of hyperspectral remote sensing images with support vector machines, IEEE Trans Geosci Remote Sens 42 ( 2004 ), (8) 1778 – 1790. Aug.en_US
dc.identifier.citedreferenceG. Camps‐Valls, and L. Bruzzone, Kernel‐based methods for hyperspectral image classification, IEEE Trans Geosci Remote Sens 43 ( 2005 ), (6) 1351 – 1362.en_US
dc.identifier.citedreferenceX. Zhu, Semi‐supervised learning literature survey, Technical Report 1530, Computer Sciences, University of Wisconsin‐Madison, 2005.en_US
dc.identifier.citedreferenceB. Shahshahani, and D. Landgrebe, The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon, IEEE Trans Geosci Remote Sens 32 ( 1994 ), 1087 – 1095.en_US
dc.identifier.citedreferenceY. Chen, M. Crawford, and J. Ghosh, Applying nonlinear manifold learning to hyperspectral data for land cover classification, In IEEE International Geoscience and Remote Sensing Symposium (IGARSS 05), 2005.en_US
dc.identifier.citedreferenceY. Chen, M. M. Crawford, and J. Ghosh, Improved nonlinear manifold learning for land cover classification via intelligent landmark selection, In IEEE International Geoscience and Remote Sensing Symposium (IGARSS 06), 2006.en_US
dc.identifier.citedreferenceW. Kim, Y. Chen, M. Crawford, J. Tilton, and J. Ghosh, Multiresolution manifold learning for classification of hyperspectral data, In IEEE International Geoscience and Remote Sensing Symposium (IGARSS 07), 2007.en_US
dc.identifier.citedreferenceW. Kim, M. Crawford, and J. Ghosh, Spatially adapted manifold learning for classification of hyperspectral imagery with insufficient labeled data, In Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International, vol. 1, 2008, I‐213 – I‐216, 7 – 11.en_US
dc.identifier.citedreferenceD. A. Griffith, Modeling spatial dependence in high spatial resolution hyperspectral data sets, J Geograph Syst 4 (1) ( 2002 ), 43 – 51.en_US
dc.identifier.citedreferenceR. Haralick, and K. Shanmugam, Combined spectral and spatial processing of ERTS imagery data, Remote Sens Environ 3 (1) ( 1974 ), 3 – 13.en_US
dc.identifier.citedreferenceY. Chen, M. Crawford, and J. Ghosh, Knowledge based stacking of hyperspectral data for land cover classification, In IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2007), 2007.en_US
dc.identifier.citedreferenceL. Jiménez, J. Rivera‐Medina, E. Rodríguez‐Díaz, E. Arzuaga‐Cruz, and M. Ramírez‐Vélez, Integration of spatial and spectral information by means of unsupervised extraction and classification for homogenous objects applied to multispectral and hyperspectral data, IEEE Trans Geosci Remote Sens 43 (4) ( 2005 ), 844 – 851.en_US
dc.identifier.citedreferenceY. Tarabalka, J. Benediktsson, and J. Chanussot, Spectral‐spatial classification of hyperspectral imagery based on partitional clustering techniques, IEEE Trans Geosci Remote Sens 47 (8) ( 2009 ), 2973.en_US
dc.identifier.citedreferenceW. Davis, and F. Peet, A method of smoothing digital thematic maps, Remote Sens Environ 6 (1) ( 1977 ), 45 – 49.en_US
dc.identifier.citedreferenceQ. Jackson, and D. Landgrebe, Adaptive Bayesian contextual classification based on Markov random fields, IEEE Trans Geosci Remote Sens 40 ( 2002 ), (11) 2454 – 2463.en_US
dc.identifier.citedreferenceR. Vatsavai, S. Shekhar, and T. Burk, An efficient spatial semi‐supervised learning algorithm, Int J Parallel, Emergent Distrib Syst 22 (6) ( 2007 ), 427 – 437.en_US
dc.identifier.citedreferenceP. Goovaerts, Geostatistical incorporation of spatial coordinates into supervised classification of hyperspectral data, J Geograph Syst 4 (1) ( 2002 ), 99 – 111.en_US
dc.identifier.citedreferenceG. Jun, R. R. Vatsavai, and J. Ghosh, Spatially adaptive classification and active learning of multispectral data with Gaussian processes, In Proc. ICDM Workshop on Spatial and Spatio‐temporal Data Mining (SSTDM/ICDM09), 2009.en_US
dc.identifier.citedreferenceG. Jun, and J. Ghosh, Spatially adaptive classification of land cover with remote sensing data, IEEE Trans Geosci Remote Sens ( 2011 ), in press.en_US
dc.identifier.citedreferenceA. Fotheringham, C. Brunsdon, and M. Charlton, Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, John Wiley & Sons Inc, 2002.en_US
dc.identifier.citedreferenceP. Harris, A. Fotheringham, R. Crespo, and M. Charlton, The use of geographically weighted regression for spatial prediction: an evaluation of models using simulated data sets, Math Geosci 42 (6) ( 2010 ) 657 – 680.en_US
dc.identifier.citedreferenceV. Tresp, Mixtures of Gaussian processes, In Advances in Neural Information Processing Systems (NIPS01), 2001.en_US
dc.identifier.citedreferenceS. Kumar, J. Ghosh, and M. M. Crawford, Best‐bases feature extraction algorithms for classification of hyperspectral data, IEEE Trans Geosci Remote Sens 39 (7) ( 2001 ), 1368 – 1379.en_US
dc.identifier.citedreferenceR. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, ( 2nd ed. ), Wiley‐Interscience, Hoboken, NJ, 2000.en_US
dc.identifier.citedreferenceM. Stein, Interpolation of Spatial Data: some theory for kriging, New York, Springer‐Verlag, 1999.en_US
dc.identifier.citedreferenceJ. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, Investigation of the random forest framework for classification of hyperspectral data, IEEE Trans Geosci Remote Sens 43 (3) ( 2005 ), 492 – 501.en_US
dc.identifier.citedreferenceY. Chen, M. M. Crawford, and J. Ghosh, Integrating support vector machines in a hierarchical output space decomposition framework, In IEEE International Geoscience and Remote Sensing Symposium (IGARSS 04), 2004.en_US
dc.identifier.citedreferenceG. Jun, and J. Ghosh, An efficient active learning algorithm with knowledge transfer for hyperspectral remote sensing data, In IEEE International Geoscience and Remote Sensing Symposium (IGARSS 08), 2008.en_US
dc.identifier.citedreferenceS. Rajan, J. Ghosh, and M. M. Crawford, An active learning approach to hyperspectral data classification, IEEE Trans Geosci Remote Sens 46 (4) ( 2008 ), 1231 – 1242.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.