Show simple item record

High-Stiffness, Lock-and-Key Heat-Reversible Locator-Snap Systems for the Design for Disassembly

dc.contributor.authorShalaby, Mohammed Mouniren_US
dc.contributor.authorSaitou, Kazuhiroen_US
dc.date.accessioned2011-11-14T16:30:14Z
dc.date.available2011-11-14T16:30:14Z
dc.date.issued2009-03-23en_US
dc.identifier.citationShalaby, M.; Saitou, K. (2009). High-Stiffness, Lock-and-Key Heat-Reversible Locator-Snap Systems for the Design for Disassembly." Transactions of ASME, Journal of Mechanical Design 131(4): 041005-1 - 041005-9. <http://hdl.handle.net/2027.42/87222>en_US
dc.identifier.issn1050-0472en_US
dc.identifier.issn1528-9001en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87222
dc.description.abstractDriven by the moral sense of obligation, legislative and social pressures, manufacturers now consider effective part reuse and material recycling at the end of product life at the design stage. It is a key consideration to use joints that can disengage with minimum labor, part damage, and material contamination. This paper extends our previous work on the design of high-stiffness reversible locator-snap system that can disengage nondestructively with localized heat (Shalaby and Saitou, 2006, Optimal Heat-Reversible Snap Joints for Frame-Panel Assembly in Aluminum Space Frame Automotive Bodies," Proceedings of the LCE2006: The 13th CIRP International Conference on Life Cycle Engineering, Leuven, Belgium, May 31-Jun. 2, pp. 411-416; Shalaby and Saitou, 2008, "Design for Disassembly With High-Stiffness, Heat-Reversible Locator-Snap Systems," ASME J. Mech. Des., 130(12), p. 121701) to include (1) modeling for tolerance stack-up and (2) lock-and-key concept to ensure that snaps only disengage when the right procedure is followed. The design problem is posed as an optimization problem to find the locations, numbers, and orientations of locators and snaps, and the locations and sizes of heating areas, to release the snaps with minimum heat, compliance, and tolerance stackup. The motion and structural requirements are considered constraints. Screw theory is employed to precalculate the set of feasible types and orientations of locators and snaps that are examined during optimization. Multi-objective genetic algorithm coupled with structural and thermal finite element analysis is used to solve the optimization problem. The method is applied on two case studies. The Pareto-optimal solutions present alternative designs with different trade-offs between the design objectives.en_US
dc.publisherASMEen_US
dc.titleHigh-Stiffness, Lock-and-Key Heat-Reversible Locator-Snap Systems for the Design for Disassemblyen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMechanical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mechanical Engineeringen_US
dc.contributor.affiliationotherGeneral Electric-Global Research Center, 1 Research Circle, Niskayuna, NY 12309.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87222/4/Saitou5.pdf
dc.identifier.doi10.1115/1.3087529en_US
dc.identifier.sourceJournal of Mechanical Designen_US
dc.owningcollnameMechanical Engineering, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.