Show simple item record

The effects of electrostatic forces on the distribution of drops in a channel flow: Two-dimensional oblate drops

dc.contributor.authorFernández, Arturoen_US
dc.contributor.authorTryggvason, Gretaren_US
dc.contributor.authorChe, Judyen_US
dc.contributor.authorCeccio, Steven L.en_US
dc.date.accessioned2011-11-15T15:57:42Z
dc.date.available2011-11-15T15:57:42Z
dc.date.issued2005-09en_US
dc.identifier.citationFernández, Arturo; Tryggvason, Gretar; Che, Judy; Ceccio, Steven L. (2005). "The effects of electrostatic forces on the distribution of drops in a channel flow: Two-dimensional oblate drops." Physics of Fluids 17(9): 093302-093302-15. <http://hdl.handle.net/2027.42/87286>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87286
dc.description.abstractNumerical simulations are used to examine the effect of an electrostatic field on an emulsion of drops in a channel. The leaky-dielectric theory of Taylor is used to find the electric field, the charge distribution on the drop surface, and the resulting forces. The Navier-Stokes equations are solved using a front-tracking/finite-volume technique. Depending on the ratios of conductivity and permittivity of the drop fluid and the suspending fluid the drops can become oblate or prolate. In addition to normal forces that deform the drops, tangential forces can induce a fluid motion either from the poles of the drops to their equator or from the equator to the poles. In this paper we focus on oblate drops, where both the dielectrophoretic and the electrohydrodynamic interactions of the drops work together to “fibrate” the emulsion by lining the drops up into columns parallel to the electric field. When the flow through the channel is slow, the fibers can extend from one wall to the other. As the flow rate is increased the fibers are broken up and drops accumulate at the channel walls. For high enough flow rate, when the drop interactions are dominated by the fluid shear, the drops remain in suspension. Only two-dimensional systems are examined here, but the method can be used for fully three-dimensional systems as well.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleThe effects of electrostatic forces on the distribution of drops in a channel flow: Two-dimensional oblate dropsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mechanical Engineering and Applied Mechanics. University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherDepartment of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87286/2/093302_1.pdf
dc.identifier.doi10.1063/1.2043147en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceC. T. O’Konski and H. C. Thacher, Jr., “The distortion of aerosol droplets by an electric field,” J. Phys. Chem. 57, 955 (1953).en_US
dc.identifier.citedreferenceG. I. Taylor, “Disintegration of water drops in an electric field,” Proc. R. Soc. London, Ser. A 280, 383 (1964).en_US
dc.identifier.citedreferenceO. A. Basaran and L. E. Scriven, “Axisymmetric shapes and stability of isolated charged drops in an external electric field,” Phys. Fluids A 1, 799 (1989).en_US
dc.identifier.citedreferenceR. S. Allan and S. G. Mason, “Particle behaviour in shear and electric fields I. Deformation and burst of fluid drops,” Proc. R. Soc. London, Ser. A 267, 45 (1962).en_US
dc.identifier.citedreferenceG. I. Taylor, “Studies in electrohydrodynamics: I. The circulation produced in a drop by an electric field,” Proc. R. Soc. London, Ser. A 291, 159 (1966).en_US
dc.identifier.citedreferenceS. Torza, R. G. Cox, and S. G. Mason, “Electrohydrodynamic deformation and burst of liquid drops,” Philos. Trans. R. Soc. London, Ser. A 269, 295 (1971).en_US
dc.identifier.citedreferenceO. O. Ajayi, “A note on Taylor’s electrohydrodynamic theory,” Proc. R. Soc. London, Ser. A 364, 499 (1978).en_US
dc.identifier.citedreferenceO. Vizika and D. A. Saville, “The electrohydrodynamic deformation of drops suspended in liquids in steady and oscillatory electric fields,” J. Fluid Mech. 239, 1 (1992).en_US
dc.identifier.citedreferenceF. Feuillebois, in Multiphase Science and Technology, edited by G. F. Hewitt, J. M. Delhaye, and N. Zuber (Hemisphere, New York, 1989), Vol. 4, p. 583.en_US
dc.identifier.citedreferenceJ. Feng, H. H. Hu, and D. D. Joseph, “Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. II. Couette and Poiseuille flows,” J. Fluid Mech. 277, 271 (1995).en_US
dc.identifier.citedreferenceS. Mortazavi and G. Tryggvason, “A numerical study of the motion of drops in Poiseuille flow. Part 1. Lateral migration of one drop,” J. Fluid Mech. 400, 1 (2000).en_US
dc.identifier.citedreferenceB. P. Ho and L. G. Leal, “Inertial migration of rigid spheres in two-dimensional unidirectional flows,” J. Fluid Mech. 65, 365 (1976).en_US
dc.identifier.citedreferenceP. Vasseur and R. G. Cox, “The lateral migration of a spherical particle in two-dimensional shear flows,” J. Fluid Mech. 78, 385 (1976).en_US
dc.identifier.citedreferenceR. G. Cox and S. K. Hsu, “The lateral migration of a solid particles in a laminar flow near a plane,” Int. J. Multiphase Flow 3, 201 (1977).en_US
dc.identifier.citedreferenceJ. F. Brady and G. Bossis, “Stokesian dynamics,” Annu. Rev. Fluid Mech. 20, 111 (1988).en_US
dc.identifier.citedreferenceR. Nott and J. F. Brady, “Pressure-driven flow of suspensions: Simulation and theory,” J. Fluid Mech. 275, 157 (1994).en_US
dc.identifier.citedreferenceH. Zhou and C. Pozrikidis, “The flow of ordered and random suspensions of two-dimensional drops in a channel,” J. Fluid Mech. 255, 103 (1993).en_US
dc.identifier.citedreferenceM. Loewenberg and E. J. Hinch, “Numerical simulation of a concentrated emulsion in shear flow,” J. Fluid Mech. 321, 395 (1996).en_US
dc.identifier.citedreferenceX. Li and C. Pozrikidis, “Wall-bounded shear flow and channel flow of suspensions of liquid drops,” Int. J. Multiphase Flow 26, 1247 (2000).en_US
dc.identifier.citedreferenceD. L. Koch and R. J. Hill, “Inertial effects in suspension and porous media flows,” Annu. Rev. Fluid Mech. 33, 619 (2001).en_US
dc.identifier.citedreferenceW. M. Winslow, “Induced fibrillation of suspensions,” J. Appl. Phys. 20, 1137 (1949).en_US
dc.identifier.citedreferenceH. Block and J. P. Kelly, “Electro-rheology,” J. Phys. D 21, 1661 (1988).en_US
dc.identifier.citedreferenceT. C. Halsey, J. E. Martin, and D. Adolf, “Rheology of electrorheological fluids,” Phys. Rev. Lett. 68, 1519 (1992)en_US
dc.identifier.citedreferenceT. C. Halsey, “Electrorheological fluids,” Science 258, 761 (1992).en_US
dc.identifier.citedreferenceD. J. Klingerberg, F. van Swoi, and C. F. Zukoski, “Dynamic simulation of electrorheological suspensions,” J. Chem. Phys. 91, 7888 (1989).en_US
dc.identifier.citedreferenceD. J. Klingerberg, F. van Swoi, and C. F. Zukoski, “The small shear rate response of electrorheological suspension, I. Simulation if the point-dipole limit,” J. Chem. Phys. 94, 6160 (1991).en_US
dc.identifier.citedreferenceR. T. Bonnecaze and J. F. Brady, “Dynamic simulation of an electrorheological fluid,” J. Chem. Phys. 96, 2183 (1992).en_US
dc.identifier.citedreferenceP. A. Arp, R. T. Foister, and S. G. Mason, “Some electrohydrodynamic effects in fluid dispersions,” Adv. Colloid Interface Sci. 12, 295 (1980).en_US
dc.identifier.citedreferenceX. D. Pan and G. H. McKinley, “Characteristics of electrorheological responses in an emulsion system,” J. Colloid Interface Sci. 195, 101 (1997).en_US
dc.identifier.citedreferenceH. Kimura, K. Aikawa, Y. Masabuchi, J. Takimoto, K. Koyama, and T. Uemura, “‘Positive’ and ‘negative’ electro-rheological effect of liquid blends,” J. Non-Newtonian Fluid Mech. 76, 199 (1998).en_US
dc.identifier.citedreferenceJ. W. Ha and S. M. Yang, “Rheological responses of oil-in-oil emulsions in an electric field,” J. Rheol. 44, 235 (2000).en_US
dc.identifier.citedreferenceK. Tajiri, K. Ohta, T. Nagaya, H. Orihara, and A. Inoue, “Electrorheological effect in immiscible polymer blends,” J. Rheol. 41, 331, (1997).en_US
dc.identifier.citedreferenceK. Tajiri, H. Orihara, Y. Ishibashi, M. Doi, and A. Inoue, “Transient response of electrorheological effect to a step field in an immiscible polymer blend: First mode in type I blend,” J. Rheol. 42, 335 (1998).en_US
dc.identifier.citedreferenceK. Tajiri, H. Orihara, Y. Ishibashi, M. Doi, and A. Inoue, “Transient response of electrorheological effect to a step field in an immiscible polymer blend: First mode in type I blend,” J. Rheol. 42, 335 (1998).en_US
dc.identifier.citedreferenceH. Orihara, Y. Hosoi, K. Tajiri, Y. Ishibashi, M. Doi, and A. Inoue, “Electrorheological properties of a type-I immiscible polymer blend: Scaling and structural changes,” J. Rheol. 43, 125 (1999).en_US
dc.identifier.citedreferenceJ. D. Sherwood, “Breakup of fluid droplets in electric and magnetic fields,” J. Fluid Mech. 188, 133 (1988).en_US
dc.identifier.citedreferenceT. Tsukada, T. Katayama, Y. Ito, and M. Hozawa, “Theoretical and experimental studies of circulation’s inside and outside a deformed drop under a uniform electric field,” J. Chem. Eng. Jpn. 26, 698 (1993).en_US
dc.identifier.citedreferenceT. Tsukada, Y. Yamamoto, T. Katayama, and M. Hozawa, “Effect of an electric field on the behavior of a drop moving in a quiescent liquid,” J. Chem. Eng. Jpn. 27, 662 (1994).en_US
dc.identifier.citedreferenceJ. Q. Feng and T. C. Scott, “A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field,” J. Fluid Mech. 311, 289 (1996).en_US
dc.identifier.citedreferenceC. Sozou, “Electrohydrodynamics of a pair of liquid drops,” J. Fluid Mech. 67, 339 (1975).en_US
dc.identifier.citedreferenceJ. C. Baygents, N. J. Rivette, and H. A. Stone, “Electrohydrodynamic deformation and interaction of drop pairs,” J. Fluid Mech. 368, 359 (1998).en_US
dc.identifier.citedreferenceJ. R. Melcher and G. I. Taylor, “Electrohydrodynamics: A review of the role of interfacial shear stresses,” Annu. Rev. Fluid Mech. 1, 111 (1969).en_US
dc.identifier.citedreferenceD. A. Saville, “Electrohydrodynamics: The Taylor-Melcher leaky dielectric model,” Annu. Rev. Fluid Mech. 29, 27 (1997).en_US
dc.identifier.citedreferenceS. O. Unverdi and G. Tryggvason, “A Front tracking method for viscous incompressible flows.” J. Comput. Phys. 100, 25 (1992).en_US
dc.identifier.citedreferenceG. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, and Y.-J. Jan, “A front tracking method for the computations of multiphase flow,” J. Comput. Phys. 169, 708 (2001).en_US
dc.identifier.citedreferenceC. S. Peskin, “Numerical analysis of blood flow in the heart,” J. Comput. Phys. 25, 220 (1977).en_US
dc.identifier.citedreferenceS. Krause and P. Chandratreya, “Electrorotation of deformable fluid droplets,” J. Colloid Interface Sci. 206, 10 (1998).en_US
dc.identifier.citedreferenceP. H. Rhodes, R. S. Snyder, and G. O. Roberts, “Electrohydrodynamic distortion of sample streams in continuous flow electrophoresis,” J. Colloid Interface Sci. 129, 78 (1989).en_US
dc.identifier.citedreferenceJ. Che, Ph.D. dissertation, The University of Michigan (1999).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.