Show simple item record

Scission-induced bounds on maximum polymer drag reduction in turbulent flow

dc.contributor.authorVanapalli, Siva A.en_US
dc.contributor.authorIslam, Mohammad T.en_US
dc.contributor.authorSolomon, Michael J.en_US
dc.date.accessioned2011-11-15T15:57:56Z
dc.date.available2011-11-15T15:57:56Z
dc.date.issued2005-09en_US
dc.identifier.citationVanapalli, Siva A.; Islam, Mohammad T.; Solomon, Michael J. (2005). "Scission-induced bounds on maximum polymer drag reduction in turbulent flow." Physics of Fluids 17(9): 095108-095108-11. <http://hdl.handle.net/2027.42/87297>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87297
dc.description.abstractWe report the direct quantification of molar mass degradation in the drag-reducing polymers polyethylene oxide (PEO) and polyacrylamide (PAM) in turbulent pipe flows with an upstream tapered contraction. We find that entrance effects associated with the upstream contraction dominate the polymer degradation. Quantifying degradation according to the scaling relationship w∝Mws−nγ̇w∝Mws−n, the exponent nn is determined to be −2.20±0.21−2.20±0.21 and −2.73±0.18−2.73±0.18 for PEO and PAM, respectively. Here MwsMws is the steady-state (or limiting) weight-average scission molar mass. A methodology is devised to circumvent polymer degradation due to the upstream contraction and thereby conduct degradation experiments in which only the turbulent flow in the pipe is responsible for chain scission. In this case, the scission-scaling relationship for PEO is w∝Mw−3.20±0.28γ̇w∝Mw−3.20±0.28. Here MwMw is the degraded weight-average molar mass after one pass through the 1.63-m length of pipe. Based on these scaling relationships we obtain a new upper limit for polymer drag reduction that is determined by chain scission rather than the maximum drag reduction asymptote.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleScission-induced bounds on maximum polymer drag reduction in turbulent flowen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Chemical Engineering and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87297/2/095108_1.pdf
dc.identifier.doi10.1063/1.2042489en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceB.A. Toms, Proceedings of the First International Congress on Rheology (North-Holland, Amsterdam, 1949), Vol. 2, p. 135.en_US
dc.identifier.citedreferenceP. S. Virk and E. L. Mollo-Christensen, “The Toms phenomenon—turbulent pipe flow of dilute polymer solutions,” J. Fluid Mech. 30, 305 (1967).en_US
dc.identifier.citedreferenceR. G. Larson, “Analysis of polymer drag reduction on a flat plate,” J. Non-Newtonian Fluid Mech. 111, 229 (2003).en_US
dc.identifier.citedreferenceE. D. Burger, L. G. Chron, and T. K. Perkins, “Studies of drag reduction conducted over a broad range of pipe line conditions when flowing Prudhoe Bay crude oil,” J. Rheol. 24, 603 (1980).en_US
dc.identifier.citedreferenceR. H. J. Sellin, J. W. Hoyt, J. Pollert, and O. Scrivener, “The effect of drag-reducing additives on fluid flows and their industrial applications. Part 2: Present applications and future proposals,” J. Hydraul. Res. 20, 235 (1982).en_US
dc.identifier.citedreferenceP. S. Virk, “Drag reduction fundamentals,” AIChE J. 21, 625 (1975).en_US
dc.identifier.citedreferenceJ. Culter, J. L. Zakin, and G. K. Patterson, “Mechanical degradation of dilute solutions of high polymers in capillary tube flow,” J. Appl. Polym. Sci. 19, 3235 (1975).en_US
dc.identifier.citedreferenceR. W. Patterson and F. H. Abernathy, “Turbulent flow drag reduction and degradation with dilute polymer solutions,” J. Fluid Mech. 43, 689 (1970).en_US
dc.identifier.citedreferenceD. L. Hunston and J. L. Zakin, “Flow-assisted degradation in dilute polystyrene solutions,” Polym. Eng. Sci. 20, 517 (1980).en_US
dc.identifier.citedreferenceE. W. Merrill and A. F. Horn, “Scission of macromolecules in dilute solution: Extensional and turbulent flows,” Polym. Commun. 25, 144 (1984).en_US
dc.identifier.citedreferenceT. Moussa and C. Tiu, “Factors affecting polymer degradation in turbulent pipe flow,” Chem. Eng. Sci. 49, 1681 (1994).en_US
dc.identifier.citedreferenceH. J. Choi, S. T. Lim, P. Y. Lai, and C. K. Chan, “Turbulent drag reduction and degradation of DNA,” Phys. Rev. Lett. 89, 088302 (2002).en_US
dc.identifier.citedreferenceV. N. Kalashnikov, “Degradation accompanying turbulent drag reduction by polymer additives,” J. Non-Newtonian Fluid Mech. 103, 105 (2002).en_US
dc.identifier.citedreferenceC. A. Kim, J. T. Kim, K. Lee, H. J. Choi, and M. S. Jhon, “Mechanical degradation of dilute polymer solutions under turbulent flow,” Polymer 41, 7611 (2000).en_US
dc.identifier.citedreferenceT. Nakken, M. Tande, and A. Elgsaeter, “Measurements of polymer induced drag reduction and polymer scission in Taylor flow using standard double-gap sample holders with axial symmetry,” J. Non-Newtonian Fluid Mech. 97, 1 (2001).en_US
dc.identifier.citedreferenceJ. H. Sung, S. T. Lim, C. A. Kim, H. J. Chung, and Y. J. Choi, “Mechanical degradation kinetics of polyethylene oxide in turbulent flow,” Korea-Aust. Rheol. J. 16, 57 (2004).en_US
dc.identifier.citedreferenceS. T. Lim, H. J. Choi, S. Y. Lee, J. S. So, and C. K. Chan, “λλ-DNA induced turbulent drag reduction and its characteristics,” Macromolecules 36, 5348 (2003).en_US
dc.identifier.citedreferenceW. Brostow, H. Ertepinar, and R. P. Singh, “Flow of dilute polymer solutions: Chain conformations and degradation of drag reducers,” Macromolecules 23, 5109 (1990).en_US
dc.identifier.citedreferenceV. N. Kalashnikov, “Dynamical similarity and dimensionless relations for turbulent drag reduction by polymer additives,” J. Non-Newtonian Fluid Mech. 75, 209 (1998).en_US
dc.identifier.citedreferenceL. I. Sedov, V. A. Ioselevich, V. N. Pilipenko, and N. G. Vasetskaya, “Turbulent diffusion and degradation of polymer molecules in a pipe and boundary layer,” J. Fluid Mech. 94, 561 (1979).en_US
dc.identifier.citedreferenceD. T. Walker and W. G. Tiederman, “Turbulent structure in a channel flow with polymer injection at the wall,” J. Fluid Mech. 218, 377 (1990).en_US
dc.identifier.citedreferenceA. A. Fontaine, H. L. Petrie, and T. A. Brungart, “Velocity profile statistics in a turbulent booundary-layer with slot-injected polymer,” J. Fluid Mech. 238, 435 (1992).en_US
dc.identifier.citedreferenceT. Moussa, C. Tiu, and T. Sridhar, “Effect of solvent on polymer degradation in turbulent flow,” J. Non-Newtonian Fluid Mech. 48, 261 (1993).en_US
dc.identifier.citedreferenceA. F. Horn and E. W. Merrill, “Midpoint scission of macromolecules in dilute solution in turbulent flow,” Nature (London) 312, 140 (1984).en_US
dc.identifier.citedreferenceD. H. Fisher and F. Rodriguez, “Degradation of drag-reducing polymers,” J. Appl. Polym. Sci. 15, 2975 (1971).en_US
dc.identifier.citedreferenceB. A. Buchholz and A. E. Barron, “The use of light scattering for precise characterization of polymers for DNA sequencing by capillary electrophoresis,” Electrophoresis 22, 4118 (2001).en_US
dc.identifier.citedreferenceB. A. Buchholz, J. M. Zahn, M. Kenward, G. W. Slater, and A. E. Barron, “Preparing monodisperse high polymers via chain scission in transient extensional flow,” Polymer 45, 1223 (2004).en_US
dc.identifier.citedreferenceM. T. Islam, S. A. Vanapalli, and M. J. Solomon, “Inertial effects on polymer chain scission in planar elongational cross-slot flow,” Macromolecules 37, 1023 (2004).en_US
dc.identifier.citedreferenceP. J. Wyatt, “Light-scattering and the absolute characterization of macromolecules,” Anal. Chim. Acta 272, 1 (1993).en_US
dc.identifier.citedreferenceE. W. Merrill and P. Leopairat, “Scission of non-interpenetrating macromolecules in transient extensional flows,” Polym. Eng. Sci. 20, 505 (1980).en_US
dc.identifier.citedreferenceT. Q. Nguyen and H. H. Kausch, “Chain extension and degradation in convergent flow,” Polymer 33, 2611 (1992).en_US
dc.identifier.citedreferenceT. Q. Nguyen and H. H. Kausch, “Influence of nozzle geometry on polystyrene degradation in convergent flow,” Colloid Polym. Sci. 269, 1099 (1991).en_US
dc.identifier.citedreferenceT. Q. Nguyen and H. H. Kausch, “Chain scission in transient extensional flow kinetics and molecular weight dependence,” J. Non-Newtonian Fluid Mech. 30, 125 (1988).en_US
dc.identifier.citedreferenceJ. A. Odell and A. Keller, “Flow-induced chain fracture of isolated linear macromolecules in solution,” J. Polym. Sci., Part B: Polym. Phys. 24, 1889 (1986).en_US
dc.identifier.citedreferenceD. L. Ho, B. Hammouda, and S. R. Kline, “Clustering of polyethylene oxide in water revisited,” J. Polym. Sci., Part B: Polym. Phys. 41, 135 (2003).en_US
dc.identifier.citedreferenceM. Polverari and T. G. M. van de Ven, “Dilute aqueous polyethylene oxide solutions: Clusters and single molecules in thermodynamic equilibrium,” J. Phys. Chem. 100, 13687 (1996).en_US
dc.identifier.citedreferenceA. Faraone, S. Magazu, G. Maisano, P. Migliardo, E. Tettamanti, and V. Villari, “The puzzle of polyethylene oxide aggregation in water: Experimental findings,” J. Chem. Phys. 110, 1801 (1999).en_US
dc.identifier.citedreferenceC. Branca, A. Faraone, S. Magazu, G. Maisano, P. Migliardo, and V. Villari, “Polyethylene oxide: A review of experimental findings by spectroscopic techniques,” J. Mol. Liq. 87, 21 (2000).en_US
dc.identifier.citedreferenceK. Devanand and J. C. Selser, “Polyethylene oxide does not necessarily aggregate in water,” Nature (London) 343, 739 (1990).en_US
dc.identifier.citedreferenceG. C. Berry, “Thermodynamic and conformational properties of polystyrene: 1. Light scattering studies on dilute solutions of linear polystyrenes,” J. Chem. Phys. 44, 4550 (1966).en_US
dc.identifier.citedreferenceP. N. Dunlap and L. G. Leal, “Dilute polystyrene solutions in extensional flows: Birefringence and flow modification,” J. Non-Newtonian Fluid Mech. 23, 5 (1987).en_US
dc.identifier.citedreferenceJ. H. Sung, C. A. Kim, H. J. Choi, B. K. Hur, J. G. Kim, and M. S. Jhon, “Turbulent drag reduction efficiency and mechanical degradation of poly(acrylamide),” J. Macromol. Sci., Phys. B43, 507 (2004).en_US
dc.identifier.citedreferenceJ. M. J. Den Toonder, A. A. Draad, G. D. C. Kuiken, and F. T. M. Nieuwstadt, “Degradation effects on dilute polymer solutions on turbulent drag reduction in pipe flows,” Appl. Sci. Res. 55, 63 (1995).en_US
dc.identifier.citedreferenceV. E. Terrapon, Y. Dubief, P. Moin, E. S. G. Shaqfeh, and S. K. Lele, “Simulated polymer stretch in a turbulent flow using Brownian dynamics,” J. Fluid Mech. 504, 61 (2004).en_US
dc.identifier.citedreferenceC. D. Dimitropoulos, R. Sureshkumar, and A. N. Beris, “Direct numerical simulation of viscoelastic turbulent channel flow exhibiting drag reduction: Effect of the variation of rheological parameters,” J. Non-Newtonian Fluid Mech. 79, 433 (1998).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.