Show simple item record

Microscopic ion fluxes in plasma-aided nanofabrication of ordered carbon nanotip structures

dc.contributor.authorLevchenko, Igoren_US
dc.contributor.authorOstrikov, Kostyaen_US
dc.contributor.authorKeidar, Michaelen_US
dc.contributor.authorXu, S.en_US
dc.date.accessioned2011-11-15T15:59:11Z
dc.date.available2011-11-15T15:59:11Z
dc.date.issued2005-09-15en_US
dc.identifier.citationLevchenko, I.; Ostrikov, K.; Keidar, M.; Xu, S. (2005). "Microscopic ion fluxes in plasma-aided nanofabrication of ordered carbon nanotip structures." Journal of Applied Physics 98(6): 064304-064304-10. <http://hdl.handle.net/2027.42/87355>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87355
dc.description.abstractThree-dimensional topography of microscopic ion fluxes in the reactive hydrocarbon-based plasma-aided nanofabrication of ordered arrays of vertically aligned single-crystalline carbon nanotip microemitter structures is simulated by using a Monte Carlo technique. The individual ion trajectories are computed by integrating the ion equations of motion in the electrostatic field created by a biased nanostructured substrate. It is shown that the ion flux focusing onto carbon nanotips is more efficient under the conditions of low potential drop UsUs across the near-substrate plasma sheath. Under low-UsUs conditions, the ion current density onto the surface of individual nanotips is higher for higher-aspect-ratio nanotips and can exceed the mean ion current density onto the entire nanopattern in up to approximately five times. This effect becomes less pronounced with increasing the substrate bias, with the mean relative enhancement of the ion current density ξiξi not exceeding ∼ 1.7∼1.7. The value of ξiξi is higher in denser plasmas and behaves differently with the electron temperature TeTe depending on the substrate bias. When the substrate bias is low, ξiξi decreases with TeTe, with the opposite tendency under higher-UsUs conditions. The results are relevant to the plasma-enhanced chemical-vapor deposition of ordered large-area nanopatterns of vertically aligned carbon nanotips, nanofibers, and nanopyramidal microemitter structures for flat-panel display applications.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleMicroscopic ion fluxes in plasma-aided nanofabrication of ordered carbon nanotip structuresen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109-2140en_US
dc.contributor.affiliationotherSchool of Physics, The University of Sydney, Sydney, New South Wales 2006, Australiaen_US
dc.contributor.affiliationotherPlasma Sources and Applications Center, National Institute of Education (NIE), Nanyang Technological University, 637616 Singaporeen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87355/2/064304_1.pdf
dc.identifier.doi10.1063/1.2040000en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceMarket research by iSuppli/Stanford Resources, El Segundo, CA;http://www.isuppli.comen_US
dc.identifier.citedreferenceM.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, CA, 1996).en_US
dc.identifier.citedreferenceW. P. Kang, T. Fisher, and J. L. Davidson, New Diamond Front. Carbon Technol. 11, 129 (2001).en_US
dc.identifier.citedreferenceE. T. Thostenson, Z. Ren, and T. W. Chou, Compos. Sci. Technol. 61, 1899 (2001).en_US
dc.identifier.citedreferenceK. B. K. Teo et al., IEE Proc.-G: Circuits, Devices Syst. 151, 443 (2004).en_US
dc.identifier.citedreferenceL. Nilsson, O. Groening, O. Kuettel, P. Groeniing, and L. Schlapbach, J. Vac. Sci. Technol. A 20, 326 (2002).en_US
dc.identifier.citedreferenceM. Mauger, V. T. Bihn, A. Levesque, and D. Guillot, Appl. Phys. Lett. 85, 305 (2004).en_US
dc.identifier.citedreferenceK.N. Tu, J.W. Mayer, and L.C. Feldman, Electronic Thin Film Science - for Electrical Engineers and Materials Scientists (Macmillan, New York, 1992).en_US
dc.identifier.citedreferenceD. G. Schlom, J. H. Haeni, J. Lettieri, C. D. Theis, W. Tian, J. C. Jiang, and X. Q. Pan, Mater. Sci. Eng., B 87, 282 (2001).en_US
dc.identifier.citedreferenceStructure-Property Relationships of Oxide Surfaces and Interfaces, edited by C. B. Carter, X. Q. Pan, K. Sickafus, H. L. Tuller, and T. Wood (Materials Research Society, Warrendale, 2001), Vol. 654.en_US
dc.identifier.citedreferenceB. T. Liu et al., Appl. Phys. Lett. 80, 4801 (2002).en_US
dc.identifier.citedreferenceS. Somiya, H. Toyoda, Y. Hotta, and H. Sugai, Jpn. J. Appl. Phys., Part 1 43, 7696 (2004).en_US
dc.identifier.citedreferenceH. Toyoda, H. Morishima, R. Fukute, Y. Hori, I. Murakami, and H. Sugai, J. Appl. Phys. 95, 5172 (2004).en_US
dc.identifier.citedreferenceW. B. Choi et al., Appl. Phys. Lett. 75, 3129 (1999).en_US
dc.identifier.citedreferenceC. Bower, W. Zhu, S. Jin, and O. Zhou, Appl. Phys. Lett. 77, 830 (2000).en_US
dc.identifier.citedreferenceM. Chhowalla et al., J. Appl. Phys. 90, 5308 (2001).en_US
dc.identifier.citedreferenceC. L. Tsai, C. F. Chen, and L. K. Wu, Appl. Phys. Lett. 81, 721 (2002).en_US
dc.identifier.citedreferenceS. B. Lee, A. S. Teh, K. B. K. Teo, M. Chhowalla, D. G. Hasko, W. I. Milne, G. A. J. Amaratunga, and H. Ahmed, Nanotechnology 14, 192 (2003).en_US
dc.identifier.citedreferenceM. Meyyappan, L. Delzeit, A. Cassel, and D. Hash, Plasma Sources Sci. Technol. 12, 205 (2003).en_US
dc.identifier.citedreferenceS. Hofmann, C. Dukati, J. Robertson, and B. Kleinsorge, Appl. Phys. Lett. 83, 135 (2003).en_US
dc.identifier.citedreferenceY. Shiratori, H. Hiraoka, Y. Takeuchi, S. Itoh, and M. Yamamoto, Appl. Phys. Lett. 82, 2485 (2003).en_US
dc.identifier.citedreferenceC. Ducati, I. Alexandrou, M. Chhowalla, J. Robertson, and G. A. J. Amaratunga, J. Appl. Phys. 95, 6387 (2004).en_US
dc.identifier.citedreferenceM. S. Bell, R. G. Lacerda, K. B. K. Teo, N. L. Rupesinghe, G. A. J. Amaratunga, W. I. Milne, and M. Chhowalla, Appl. Phys. Lett. 85, 1137 (2004).en_US
dc.identifier.citedreferenceK. Ostrikov, Z. Tsakadze, P. P. Rutkevych, J. D. Long, S. Xu, and I. Denysenko, Contrib. Plasma Phys. 45, 514 (2005);K. Ostrikov, I. Denysenko, M. Y. Yu, and S. Xu, Phys. Scr. 72, 277 (2005).en_US
dc.identifier.citedreferenceK. N. Tu, J. Appl. Phys. 94, 5451 (2003).en_US
dc.identifier.citedreferenceK. Ostrikov, Rev. Mod. Phys. 77, 489 (2005).en_US
dc.identifier.citedreferenceNanotechnology Research Directions: Vision for Nanotechnology Research and Development in the Next Decade edited by M. C. Roco, S. Williams, and P. Alivisatos (Kluwer Academic, Amsterdam, 1999);See also: US National Nanotechnology Initiative, http://www.nano.gov.en_US
dc.identifier.citedreferenceC.P. Poole, Jr. and F.J. Owens, Introduction to Nanotechnology (Wiley, New York, 2003).en_US
dc.identifier.citedreferenceV. Shchukin, N.N. Ledentsov, and D. Bimberg, Epitaxy of Nanostructures (Springer, Berlin, 2003).en_US
dc.identifier.citedreferenceH.L. Chua and S. Xu, Second International Conference on Nanostructures and Nanotechnology, Singapore, 25–26 November 2004 (unpublished), Contrib. Paper T18.en_US
dc.identifier.citedreferenceA. Fridman and L.A. Kennedy, Plasma Physics and Engineering (Taylor & Francis, New York, 2004).en_US
dc.identifier.citedreferenceM.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994).en_US
dc.identifier.citedreferenceI. B. Denysenko, S. Xu, P. P. Rutkevych, J. D. Long, N. A. Azarenkov, and K. Ostrikov, J. Appl. Phys. 95, 2713 (2004).en_US
dc.identifier.citedreferenceZ. L. Tsakadze, K. Ostrikov, J. D. Long, and S. Xu, Diamond Relat. Mater. 13, 1923 (2004).en_US
dc.identifier.citedreferenceZ. L. Tsakadze, K. Ostrikov, and S. Xu, Surf. Coat. Technol. 191/1, 49 (2005).en_US
dc.identifier.citedreferenceI. Levchenko, M. Romanov, and M. Keidar, J. Appl. Phys. 94, 1408 (2003).en_US
dc.identifier.citedreferenceD. Hash and M. Meyyappan, J. Appl. Phys. 93, 750 (2003).en_US
dc.identifier.citedreferenceD. Hash, D. Bose, T. R. Govindan, and M. Meyyappan, J. Appl. Phys. 93, 6284 (2003).en_US
dc.identifier.citedreferenceF. J. Gordillo-Vazques and J. M. Albella, Plasma Sources Sci. Technol. 13, 50 (2004).en_US
dc.identifier.citedreferenceE. I. Waldorff, A. M. Waas, P. P. Friedmann, and M. Keidar, J. Appl. Phys. 95, 2749 (2004).en_US
dc.identifier.citedreferenceA. N. Obraztsov, I. Pavlovsky, A. P. Volkov, E. D. Obraztsova, A. L. Chuvilin, and V. L. Kuznetsov, J. Vac. Sci. Technol. B 18, 1059 (2000).en_US
dc.identifier.citedreferenceE. Abdel-Fattah and H. Sugai, Appl. Phys. Lett. 83, 1533 (2003).en_US
dc.identifier.citedreferenceH. Sugai, I. Ghanashev, and M. Nagatsu, Plasma Sources Sci. Technol. 7, 192 (1998).en_US
dc.identifier.citedreferenceS. Xu, K. N. Ostrikov, Y. Li, E. L. Tsakadze, and I. R. Jones, Phys. Plasmas 8, 2549 (2001).en_US
dc.identifier.citedreferenceJ.D. Jackson, Classical Electrodynamics (Wiley, New York, 1967).en_US
dc.identifier.citedreferenceI. Levchenko, M. Korobov, M. Romanov, and M. Keidar, J. Phys. D 37, 1619 (2004).en_US
dc.identifier.citedreferenceA. Klein and A. Godunov, Introductory Computational Physics (Cambridge University Press, Cambridge, UK, 2005).en_US
dc.identifier.citedreferenceQ. Y. Zhang and P. Chu, Surf. Coat. Technol. 158, 247 (2002).en_US
dc.identifier.citedreferenceK. N. Tu, A. M. Gusak, and I. Sobchenko, Phys. Rev. B 67, 245408 (2003).en_US
dc.identifier.citedreferenceL. Levchenko and O. Baranov, Vacuum 72, 205 (2004).en_US
dc.identifier.citedreferenceS. V. Vladimirov and K. Ostrikov, Phys. Rep. 393, 175 (2004).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.