Show simple item record

Optical properties and structure characterization of sapphire after Ni ion implantation and annealing

dc.contributor.authorXiang, X.en_US
dc.contributor.authorZu, X. T.en_US
dc.contributor.authorBao, J. W.en_US
dc.contributor.authorZhu, S.en_US
dc.contributor.authorWang, L. M.en_US
dc.date.accessioned2011-11-15T15:59:56Z
dc.date.available2011-11-15T15:59:56Z
dc.date.issued2005-10-01en_US
dc.identifier.citationXiang, X.; Zu, X. T.; Bao, J. W.; Zhu, S.; Wang, L. M. (2005). "Optical properties and structure characterization of sapphire after Ni ion implantation and annealing." Journal of Applied Physics 98(7): 073524-073524-5. <http://hdl.handle.net/2027.42/87389>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87389
dc.description.abstractImplantation of 64 keV64keV Ni ions to sapphire was conducted at room temperature to 1×1017 ions/cm21×1017ions∕cm2 with a current density of 55 or 10 μA/cm210μA∕cm2. Metallic Ni nanoparticles were formed with the 5 μA/cm25μA∕cm2 ion current and the NiAl2O4NiAl2O4 compound was formed with the 10 μA/cm210μA∕cm2 ion current. The crystals implanted with both current densities were annealed isochronally for 1 h1h at temperatures up to 1000 °C1000°C in steps of 100 °C100°C in an ambient atmosphere. Optical absorption spectroscopy, x-ray diffraction, transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy have been utilized to characterize the samples. The surface plasmon resonance (SPR) absorption band peaked at 400 nm400nm due to the Ni nanoparticles shifted toward the longer wavelength gradually with the annealing temperature increasing from 400 to 700 °C400to700°C. The SPR absorption band disappeared after the annealing temperature reached 800 °C800°C. NiO nanoparticles were formed at the expense of Ni nanoparticles with an increasing annealing temperature. The TEM analyses revealed that the nanoparticles grew to 6–20 nm6–20nm and migrated toward the surface after annealing at 900 °C900°C. The absorption band at 430 nm430nm from Ni2+Ni2+ cations in NiAl2O4NiAl2O4 did not shift with the increasing annealing temperature.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleOptical properties and structure characterization of sapphire after Ni ion implantation and annealingen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104en_US
dc.contributor.affiliationotherDepartment of Applied Physics, University of Electronic Science and Technology of China, Chengdu, People's Republic of China, 610054en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87389/2/073524_1.pdf
dc.identifier.doi10.1063/1.2084314en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceA. Meldrum, R. F. Haglund, Jr., L. A. Boatner, and C. W. White, Adv. Mater. (Weinheim, Ger.) 13, 1431 (2001).en_US
dc.identifier.citedreferenceL. Yang, D.H. Osborne, R.F. Haglund, Jr., R.H. Magruder, C.W. White, R.A. Zuhr, and H. Hosono, Appl. Phys. A: Solids Surf. 62, 403 (1996).en_US
dc.identifier.citedreferenceP. Chakraborty, J. Mater. Sci. 33, 2235 (1998).en_US
dc.identifier.citedreferenceA. Nakajima, H. Nakao, H. Ueno, T. Futatsugi, and N. Yokoyama, Appl. Phys. Lett. 73, 1071 (1998).en_US
dc.identifier.citedreferenceO. A. Plaksin, Y. Takeda, N. Okubo, H. Amekura, K. Kono, N. Umeda, and N. Kishimoto, Thin Solid Films 464-465, 264 (2004).en_US
dc.identifier.citedreferenceJ. L. Chen, R. Mu, A. Ueda, M. H. Wu, Y. S. Tung, Z. Gu, D. O. Henderson, C. W. White, J. D. Budai, and R. A. Zuhr, J. Vac. Sci. Technol. A 16, 1409 (1998).en_US
dc.identifier.citedreferenceY. X. Liu, Y. C. Liu, D. Z. Shen, G. Z. Zhong, X. W. Fan, X. G. Kong, R. Mu, and D. O. Henderson, Solid State Commun. 121, 531 (2002).en_US
dc.identifier.citedreferenceT. Isobe, S. Y. Park, and R. A. Weeks, J. Non-Cryst. Solids 189, 173 (1995).en_US
dc.identifier.citedreferenceH. Amekura, H. Kitazawa, N. Umeda, Y. Takeda, and N. Kishimoto, Nucl. Instrum. Methods Phys. Res. B 222, 122 (2004).en_US
dc.identifier.citedreferenceH. Amekura, N. Umeda, Y. Takeda, J. Lu, and N. Kishimoto, Appl. Phys. Lett. 85, 1015 (2004).en_US
dc.identifier.citedreferenceX. Xiang, X. T. Zu, S. Zhu, and L. M. Wang, Appl. Phys. Lett. 84, 52 (2004).en_US
dc.identifier.citedreferenceB.D. Cullity, Elements of X-Ray of Diffractions (Addition-Wesley, Reading, MA, 1978), p. 102.en_US
dc.identifier.citedreferenceH. Amekura, Y. Takeda, and N. Kishimoto, Nucl. Instrum. Methods Phys. Res. B 222, 96 (2004).en_US
dc.identifier.citedreferenceJ. Słoczyński, J. Ziółkowski, B. Grzybowska, R. Grabowski, D. Jachewicz, K. Wcisło, and L. Gengembre, J. Catal. 187, 410 (1999).en_US
dc.identifier.citedreferenceX. Xiang, X. T. Zu, S. Zhu, and L. M. Wang, Physica B 368, 88 (2005).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.