Show simple item record

Ablation study in the capillary discharge of an electrothermal gun

dc.contributor.authorKeidar, Michaelen_US
dc.contributor.authorBoyd, Iain D.en_US
dc.date.accessioned2011-11-15T16:01:09Z
dc.date.available2011-11-15T16:01:09Z
dc.date.issued2006-03-01en_US
dc.identifier.citationKeidar, Michael; Boyd, Iain D. (2006). "Ablation study in the capillary discharge of an electrothermal gun." Journal of Applied Physics 99(5): 053301-053301-7. <http://hdl.handle.net/2027.42/87444>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87444
dc.description.abstractIn this paper, we study the ablation phenomena associated with the operation of a capillary discharge for an electrothermal gun. Electrothermal-chemical (ETC) guns are used for enhancement of ignition and combustion of an energetic propellant. One of the major components of the ETC system is a plasma source based on a capillary discharge. In this paper, a model of the capillary discharge is developed. In this model, primary attention is paid to the ablation phenomenon. Different characteristic subregions near the ablated surface, namely, a space-charge sheath, a Knudsen layer, and a hydrodynamic layer, are considered. In this formulation, the ablation rate is determined by the parameters at the edge of the Knudsen layer. The kinetic approach is used to determine the parameters at the interface between the kinetic Knudsen layer and the hydrodynamic layer. Coupling the solution of the nonequilibrium Knudsen layer with the hydrodynamic layer provides a self-consistent solution for the ablation rate. According to the model predictions, the peak electron temperature is about 1.4 eV, the polyethylene surface temperature is about 700 K, and the pressure is about 10 MPa. It is found that the ablation rate increases with the capillary length. The ablated mass and the predicted total pressure agree with previous experimental observations.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleAblation study in the capillary discharge of an electrothermal gunen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109-2140en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87444/2/053301_1.pdf
dc.identifier.doi10.1063/1.2174111en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceA. Koleczko, W. Ehrhard, S. Kelzenberg, and N. Eisenreich, Propellants, Explos., Pyrotech. 26, 75 (2001).en_US
dc.identifier.citedreferenceA. Birk, M. D. Guercio, A. Kinkennon, D. E. Kooker, and P. Kaste, Propellants, Explos., Pyrotech. 25, 133 (2000).en_US
dc.identifier.citedreferenceJ. Li, T. A. Litzinger, and S. T. Thynell, J. Propul. Power, 21, 44 (2005).en_US
dc.identifier.citedreferenceD. Zoler, D. Saphier, and R. Alimi, J. Phys. D 27, 1423 (1994).en_US
dc.identifier.citedreferenceJ. D. Powell and A. E. Zielenski, IEEE Trans. Magn. 29, 591 (1993).en_US
dc.identifier.citedreferenceD. Zoler and R. Alimi, J. Phys. D 28, 1141 (1995).en_US
dc.identifier.citedreferenceM. R. Zaghloul, M. A. Bourham, and J. M. Doster, J. Phys. D 34, 772 (2000).en_US
dc.identifier.citedreferenceL. Muller, J. Phys. D 26, 1253 (1993).en_US
dc.identifier.citedreferenceE. Domejean, P. Chevrier, C. Fievet, and P. Petit, J. Phys. D 30, 2132 (1997).en_US
dc.identifier.citedreferenceS. V. Kukhlevsky, J. Kaiser, O. Samek, M. Liska, and J. Erostyak, J. Phys. D 33, 1090 (2000).en_US
dc.identifier.citedreferenceD. Hong et al., Rev. Sci. Instrum. 71, 15 (2000).en_US
dc.identifier.citedreferenceM. Keidar, I. D. Boyd, and I. I. Beils, IEEE Trans. Plasma Sci. 28, 376 (2000).en_US
dc.identifier.citedreferenceE. Z. Ibrahim, J. Phys. D 13, 2045 (1980).en_US
dc.identifier.citedreferenceC. B. Ruchti and L. Niemeyer, IEEE Trans. Plasma Sci. 14, 423 (1986).en_US
dc.identifier.citedreferenceR. L. Burton, B. K. Hilko, F. D. Witherspoon, and G. Jaafari, IEEE Trans. Plasma Sci. 19, 340 (1991).en_US
dc.identifier.citedreferenceD. A. Tidman, Y. C. Thio, S. A. Goldstein, and D. S. Spicer, GT Devices Technical Note No. GTD 86-7, 1986 (unpublished).en_US
dc.identifier.citedreferenceA. Loeb and Z. Kaplan, IEEE Trans. Magn. 25, 342 (1989).en_US
dc.identifier.citedreferenceR. B. Mohanti, J. G. Gilligan, and M. A. Bourham, Phys. Fluids B 3, 3046 (1991).en_US
dc.identifier.citedreferenceK. Kim, IEEE Trans. Plasma Sci. 31, 729 (2003).en_US
dc.identifier.citedreferenceM. Keidar, J. Fan, I. D. Boyd, and I. I. Beilis, J. Appl. Phys. 89, 3095 (2001).en_US
dc.identifier.citedreferenceM. Keidar, I. D. Boyd, and I. I. Beilis, J. Phys. D 34, 1675 (2001).en_US
dc.identifier.citedreferenceM. Keidar, I. D. Boyd, and I. I. Beilis, J. Propul. Power 19, 424 (2003).en_US
dc.identifier.citedreferenceG. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon, Oxford, 1994).en_US
dc.identifier.citedreferenceP. Kovatya and J. J. Lowke, J. Phys. D 17, 1197 (1984).en_US
dc.identifier.citedreferenceG. I. Kozlov, V. A. Kuznetsov, and V. A. Masyukov, Sov. Phys. JETP 39, 463 (1974).en_US
dc.identifier.citedreferenceA. I. Zemskov, V. V. Prut, and V. A. Khrabrov, Sov. Phys. Tech. Phys. 17, 285 (1972).en_US
dc.identifier.citedreferenceP. Kovatya, IEEE Trans. Plasma Sci. 12, 38 (1984).en_US
dc.identifier.citedreferenceC. S. Schmahl and P. J. Turchi, Proceeding of the International Electric Propulsion Conference (The Electric Propulsion Society, Worthington, OH, 1997), Vol. 1, p. 781.en_US
dc.identifier.citedreferenceH. R. Griem, Phys. Rev. 128, 997 (1962).en_US
dc.identifier.citedreferenceK. Gunther and R. Radke, Electrical Properties of Weakly Non-ideal Plasmas (Boston, Birhauser, 1984).en_US
dc.identifier.citedreferenceM. Keidar, I. D. Boyd, E. Antonsen, F. Gulchinski, and G. G. Spanjers, J. Propul. Power 20, 978 (2004).en_US
dc.identifier.citedreferenceH. Orbey, C. P. Bokis, and C. C. Chen, Ind. Eng. Chem. Res. 37, 4481 (1998).en_US
dc.identifier.citedreferenceC. F. Beaton and G. F. Hewitt, Physical Property Data for Design Engineer (Hemisphere, New York, 1989).en_US
dc.identifier.citedreferenceR. A. Beyer and R. A. Pesce-Rodriguez, IEEE Trans. Magn. 39, 207 (2003).en_US
dc.identifier.citedreferenceM. J. Taylor, Propellants, Explos., Pyrotech. 26, 137 (2001).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.