Show simple item record

Enhanced nonradiative relaxation and photoluminescence quenching in random, doped nanocrystalline powders

dc.contributor.authorRuan, X. L.en_US
dc.contributor.authorKaviany, Massouden_US
dc.date.accessioned2011-11-15T16:03:20Z
dc.date.available2011-11-15T16:03:20Z
dc.date.issued2005-05-15en_US
dc.identifier.citationRuan, X. L.; Kaviany, M. (2005). "Enhanced nonradiative relaxation and photoluminescence quenching in random, doped nanocrystalline powders." Journal of Applied Physics 97(10): 104331-104331-8. <http://hdl.handle.net/2027.42/87544>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87544
dc.description.abstractNonradiative relaxation and photoluminescence quenching in nanocrystalline powders doped with rare-earth elements are of interest in optical bistability, random laser, and other optoelectronic applications. Here, the luminescence quenching of a one-dimensional random medium made of multilayer nanoparticles (Y2O3)(Y2O3) doped with rare-earth elements (Yb3+)(Yb3+) is analyzed by considering the transport, transition, and interaction of the fundamental energy carriers. The nonradiative decay and luminescence quenching in random media are enhanced compared to single crystals, due to multiple scattering, enhanced absorption, and low thermal conductivity. The coherent wave treatment is used to calculate the photon absorption, allowing for field enhancement and photon localization. The luminescent and thermal emission is considered as incoherent. The size-dependent absorption coefficient and penetration depth are observed. The nonradiative decay is identified as a multiphonon relaxation process, and is found to be enhanced compared to bulk materials. The luminescence quenching and nonlinear thermal emission, occurring with increasing irradiation intensity, are predicted.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEnhanced nonradiative relaxation and photoluminescence quenching in random, doped nanocrystalline powdersen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2125en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87544/2/104331_1.pdf
dc.identifier.doi10.1063/1.1900937en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceS. Coffa, G. Franzo, F. Priolo, A. Polman, and R. Serna, Phys. Rev. B 49, 16313 (1994).en_US
dc.identifier.citedreferenceJ. Palm, F. Gan, B. Zheng, J. Michel, and L. C. Kimerling, Phys. Rev. B 54, 17603 (1996).en_US
dc.identifier.citedreferenceW. Ryba-Romanowski, S. Golab, G. Dominiak-Dzik, M. N. Palatnikov, and V. Sidorov, Appl. Phys. Lett. 78, 3610 (2001).en_US
dc.identifier.citedreferenceT. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, J. Appl. Phys. 93, 5929 (2003).en_US
dc.identifier.citedreferenceH.M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, Orlando, 1985).en_US
dc.identifier.citedreferenceS. T. Feng and E. A. Irene, J. Appl. Phys. 72, 3897 (1992).en_US
dc.identifier.citedreferenceM. Hoffmann, P. Kopka, T. Grob, and E. Voges, Electron. Lett. 34, 207 (1998).en_US
dc.identifier.citedreferenceA. Boussekou, G. Molnar, P. Demont, and J. Menegotto, J. Mater. Chem. 34, 2069 (2003).en_US
dc.identifier.citedreferenceA. Kuditcher, M. P. Hehlen, C. M. Florea, K. W. Winick, and S. C. Rand, Phys. Rev. Lett. 84, 1898 (2000).en_US
dc.identifier.citedreferenceM. A. Noginov, M. Vondrova, and B. D. Lucas, Phys. Rev. B 65, 035112 (2001).en_US
dc.identifier.citedreferenceA. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature (London) 368, 436 (1994).en_US
dc.identifier.citedreferenceH. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, Phys. Rev. Lett. 82, 2278 (1999).en_US
dc.identifier.citedreferenceY. Feng, J. F. Bisson, J. R. Lu, S. H. Huang, K. Takaichi, A. Shirakawa, M. Musha, and K. Ueda, Appl. Phys. Lett. 84, 1040 (2004).en_US
dc.identifier.citedreferenceS. M. Redmond, S. Oliveira, and S. C. Rand, Appl. Phys. Lett. 85, 5517 (2004).en_US
dc.identifier.citedreferenceZ. M. Zhang and M. I. Flik, IEEE Trans. Appl. Supercond. 3, 1604 (1993).en_US
dc.identifier.citedreferenceJ.A. Kong, Electromagnetic Wave Theory (EMW Publishing, Cambridge, 2000).en_US
dc.identifier.citedreferenceX. L. Ruan and M. Kaviany, Microscale Thermophys. Eng. 9, 63 (2005).en_US
dc.identifier.citedreferenceM. P. Hehlen, H. U. Gudel, Q. Shu, and S. Rand, J. Chem. Phys. 104, 1232 (1995).en_US
dc.identifier.citedreferenceT. Miyakawa and D. L. Dexter, Phys. Rev. B 1, 2961 (1970).en_US
dc.identifier.citedreferenceJ. Costa, P. Roura, J. R. Morante, and E. Bertran, J. Appl. Phys. 83, 7879 (1998).en_US
dc.identifier.citedreferenceR. Siegel and J.R. Howell, Thermal Radiation Heat Transfer, 4th ed. (Taylor & Francis, New York, 2002).en_US
dc.identifier.citedreferenceY.S. Touloukian and C.Y. Ho, in Thermophysical Properties of Matter, The TPRC Data Series (IFI-Plenum, New York, 1970).en_US
dc.identifier.citedreferenceM. Kaviany, Principles of Heat Transfer (Wiley, New York, 2002).en_US
dc.identifier.citedreferenceE. Hecht, Optics (Addison-Wesley, San Francisco, CA, 2002).en_US
dc.identifier.citedreferenceG. Schaack and J. A. Koningstein, J. Opt. Soc. Am. 60, 1110 (1970).en_US
dc.identifier.citedreferenceS. Redmond, S. C. Rand, X. L. Ruan, and M. Kaviany, J. Appl. Phys. 95, 4069 (2004).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.