Show simple item record

Multifractal subgrid-scale modeling for large-eddy simulation. II. Backscatter limiting and a posteriori evaluation

dc.contributor.authorBurton, Gregory C.en_US
dc.contributor.authorDahm, Werner J. A.en_US
dc.date.accessioned2011-11-15T16:04:45Z
dc.date.available2011-11-15T16:04:45Z
dc.date.issued2005-07en_US
dc.identifier.citationBurton, Gregory C.; Dahm, Werner J. A. (2005). "Multifractal subgrid-scale modeling for large-eddy simulation. II. Backscatter limiting and a posteriori evaluation." Physics of Fluids 17(7): 075112-075112-19. <http://hdl.handle.net/2027.42/87610>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87610
dc.description.abstractResults are presented from a posteriori evaluations of momentum and energy transfer between the resolved and subgrid scales when the multifractal subgrid-scale model from Part I is implemented in a flow solver for large-eddy simulations of turbulent flows. The multifractal subgrid-stress model is used to evaluate the subgrid part τij*τij* of the stress tensor, with the resolved part u¯iu¯j¯ evaluated by an explicit filter. It is shown that the corresponding subgrid and resolved contributions P*P* and PRPR to the resolved-scale energetics produce extremely accurate results for the combined subgrid energy production field P(x,t)P(x,t). A separate backscatter limiter is developed here that removes spurious energy introduced in the resolved scales by including physical backscatter, without sacrificing the high fidelity in the stress and energy production fields produced by the multifractal subgrid-scale model. This limiter makes small reductions only to those components of the stress that contribute to backscatter, and principally in locations where the gradients are large and thus the energy introduced by numerical errors is also largest. Control of the energy introduced by numerical error is thus accomplished in a manner that leaves the modeling of the subgrid-scale turbulence largely unchanged. The multifractal subgrid-scale model and the backscatter limiter are then implemented in a flow solver and shown to provide stable and accurate results in a posteriori tests based on large-eddy simulations of forced homogeneous isotropic turbulence at cell Reynolds numbers ranging from 160 ⩽ ReΔ ⩽ 106160⩽ReΔ⩽106, as well as in simulations of decaying turbulence where the model and the limiter must adjust to the changing subgrid conditions.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleMultifractal subgrid-scale modeling for large-eddy simulation. II. Backscatter limiting and a posteriori evaluationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumLaboratory for Turbulence and Combustion and W. M. Keck Laboratory for Computational Fluid Dynamics, Department of Aerospace Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2140en_US
dc.contributor.affiliationumLaboratory for Turbulence and Combustion (LTC), Department of Aerospace Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2140en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87610/2/075112_1.pdf
dc.identifier.doi10.1063/1.1965094en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceG. C. Burton and W. J. A. Dahm, “Multifractal subgrid-scale modeling for large-eddy simulation. I. Model development and a priori testing,” Phys. Fluids 17, 075111 (2005).en_US
dc.identifier.citedreferenceT. S. Lund, “The use of explicit filters in large eddy simulation,” Comput. Math. Appl. 46, 603 (2003).en_US
dc.identifier.citedreferenceA. Leonard, “Energy cascade in large-eddy simulations of turbulent fluid flows,” Adv. Geophys. 18A, 237 (1974).en_US
dc.identifier.citedreferenceD.K. Lilly, “The representation of small-scale turbulence in numerical simulation experiments,” in Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, Yorktown Heights, New York (1967).en_US
dc.identifier.citedreferenceJ. W. Deardorff, “A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers,” J. Fluid Mech. 41, 453 (1970).en_US
dc.identifier.citedreferenceR. A. Clark, J. H. Ferziger, and W. C. Reynolds, “Evaluation of subgrid-scale models using an accurately simulated turbulent flow,” J. Fluid Mech. 91, 1 (1979).en_US
dc.identifier.citedreferenceN.N. Mansour, P. Moin, W.C. Reynolds, and J.H. Ferziger, “Improved methods for large eddy simulations of turbulence,” in Turbulent Shear Flows I, edited by F. Durst et al. (Springer-Verlag, Berlin, 1979).en_US
dc.identifier.citedreferenceM. Antonopoulos-Domis, “Large-eddy simulation of a passive scalar in isotropic turbulence,” J. Fluid Mech. 104, 55 (1981).en_US
dc.identifier.citedreferenceR. S. Rogallo and P. Moin, “Numerical simulation of turbulent flows,” Annu. Rev. Fluid Mech. 16, 99 (1984).en_US
dc.identifier.citedreferenceG.S. Winckelmans, T.S. Lund, D. Carati, and A.A. Wray, “A priori testing of subgrid-scale models for the velocity-pressure vorticity-velocity formulations,” in Proceedings of the Summer Program, Center for Turbulence Research, Stanford University (1996).en_US
dc.identifier.citedreferenceG. S. Winckelmans, H. Jeanmart, and D. Carati, “On the comparison of turbulence intensities from large-eddy simulation with those from experiment or direct numerical simulation,” Phys. Fluids 14, 1809 (2002).en_US
dc.identifier.citedreferenceB. Knaepen, O. Debliquy, and D. Carati, “Subgrid-scale energy pseudo pressure in large-eddy simulation,” Phys. Fluids 14, 4235 (2002).en_US
dc.identifier.citedreferenceU. Piomelli, W. H. Cabot, P. Moin, and S. Lee, “Subgrid-scale backscatter in turbulent and transitional flows,” Phys. Fluids A 3, 1766 (1991).en_US
dc.identifier.citedreferenceS. K. Lele, “Compact finite difference schemes with spectral-like resolution,” J. Comput. Phys. 103, 16 (1992).en_US
dc.identifier.citedreferenceS. Ghosal, “An analysis of numerical errors in large-eddy simulations of turbulence,” J. Comput. Phys. 125, 187 (1996).en_US
dc.identifier.citedreferenceA. G. Kravchenko and P. Moin, “On the effect of numerical errors in large eddy simulations of turbulent flows,” J. Comput. Phys. 131, 310 (1997).en_US
dc.identifier.citedreferenceF. K. Chow and P. Moin, “A further study of numerical error in large-eddy simulations,” J. Comput. Phys. 184, 366 (2003).en_US
dc.identifier.citedreferenceJ. Bardina, J.H. Ferziger, and W.C. Reynolds, “Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows,” Technical Report TF-19, Thermosciences Division, Stanford University, Stanford, CA (1983).en_US
dc.identifier.citedreferenceC. E. Leith, “Stochastic in a subgrid-scale model—plane shear mixing layer,” Phys. Fluids A 2, 297 (1990).en_US
dc.identifier.citedreferenceM. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A dynamic subgrid-scale eddy viscosity model,” Phys. Fluids A 3, 1760 (1991).en_US
dc.identifier.citedreferenceJ. R. Chasnov, “Simulation of the Kolmogorov inertial subrange using an improved subgrid model,” Phys. Fluids A 3, 188 (1991).en_US
dc.identifier.citedreferenceS. Ghosal, T. S. Lund, P. Moin, and K. Akselvoll, “A dynamic localization model for large-eddy simulation of turbulent flows,” J. Fluid Mech. 286, 229 (1995).en_US
dc.identifier.citedreferenceD. Carati, S. Ghosal, and P. Moin, “On the representation of backscatter in dynamic localization models,” Phys. Fluids 7, 606 (1995).en_US
dc.identifier.citedreferenceF. H. Harlow and J. E. Welch, “Numerical calculation of time-dependent viscous incompressible flow of fluids with free surface,” Phys. Fluids 8, 2182 (1965).en_US
dc.identifier.citedreferenceP. R. Spalart, R. D. Moser, and M. M. Rogers, “Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions,” J. Comput. Phys. 96, 297 (1991).en_US
dc.identifier.citedreferenceS. Liu, C. Meneveau, and J. Katz, “On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet,” J. Fluid Mech. 275, 83 (1994).en_US
dc.identifier.citedreferenceT. J. R. Hughes, L. Mazzei, A. A. Oberai, and A. A. Wray, “The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence,” Phys. Fluids 13, 505 (2001).en_US
dc.identifier.citedreferenceH. S. Kang, S. Chester, and C. Meneveau, “Decaying turbulence in an active-grid-generated flow comparisons with large-eddy simulation,” J. Fluid Mech. 480, 129 (2003).en_US
dc.identifier.citedreferenceR. D. Frederiksen, W. J. A. Dahm, and D. R. Dowling, “Experimental assessment of fractal scale similarity in turbulent flows. Part 3. Multifractal scaling,” J. Fluid Mech. 338, 127 (1997).en_US
dc.identifier.citedreferenceR. D. Frederiksen, W. J. A. Dahm, and D. R. Dowling, “Experimental assessment of fractal scale similarity in turbulent flows. Part 4. Effects of Reynolds Schmidt numbers,” J. Fluid Mech. 377, 169 (1998).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.