Show simple item record

Matrix-seeded growth of nitride semiconductor nanostructures using ion beams

dc.contributor.authorWeng, X.en_US
dc.contributor.authorYe, W.en_US
dc.contributor.authorClarke, S. J.en_US
dc.contributor.authorGoldman, R. S.en_US
dc.contributor.authorRotberg, V. H. (Victor H.)en_US
dc.contributor.authorDaniel, A. V.en_US
dc.contributor.authorClarke, Royen_US
dc.date.accessioned2011-11-15T16:05:16Z
dc.date.available2011-11-15T16:05:16Z
dc.date.issued2005-03-15en_US
dc.identifier.citationWeng, X.; Ye, W.; Clarke, S. J.; Goldman, R. S.; Rotberg, V.; Daniel, A.; Clarke, R. (2005). "Matrix-seeded growth of nitride semiconductor nanostructures using ion beams." Journal of Applied Physics 97(6): 064301-064301-7. <http://hdl.handle.net/2027.42/87633>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87633
dc.description.abstractWe have examined the matrix-seeded growth of narrow-gap nitride nanostructures in nitrogen ion implanted GaAs and InAs. Low-energy implantation followed by rapid thermal annealing (RTA) results in the formation of 2–3 nm sized amorphous precipitates in a crystalline matrix. On the other hand, high-energy implantation results in an amorphous layer, with or without crystalline remnants. When the ion-beam-synthesized amorphous matrix is a continuous amorphous layer, subsequent RTA leads to the formation of 4–5 nm zinc blende (ZB)-GaN-rich crystallites in an amorphous matrix. When this matrix contains crystalline remnants, subsequent RTA leads to the formation of 2–4 nm ZB-GaN-rich crystallites within the amorphous regions. These results suggest that the matrix plays an important role in the nucleation and growth of narrow-gap nitride nanostructures, and that matrix-seeded growth may provide an opportunity to control the structure and properties of the nanostructures.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleMatrix-seeded growth of nitride semiconductor nanostructures using ion beamsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumApplied Physics Program, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87633/2/064301_1.pdf
dc.identifier.doi10.1063/1.1847726en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceA. Meldrum, R. F. Haglund, Jr., L. A. Boatner, and C. W. White, Adv. Mater. (Weinheim, Ger.) 13, 1431 (2001).en_US
dc.identifier.citedreferenceT. Shimizu-Iwayama, M. Ohshima, T. Niimi, S. Nakao, K. Saitoh, T. Fujita, and N. Itoh, J. Phys.: Condens. Matter 5, L375 (1993).en_US
dc.identifier.citedreferenceL. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, Nature (London) 408, 440 (2000).en_US
dc.identifier.citedreferenceX. Weng, S. J. Clarke, W. Ye, S. Kumar, R. S. Goldman, A. Daniel, R. Clarke, J. Holt, J. Sipowska, A. Francis, and V. Rotberg, J. Appl. Phys. 92, 4012 (2002).en_US
dc.identifier.citedreferenceX. Weng, R. S. Goldman, V. Rotberg, N. Bataiev, and L. J. Brillson, Appl. Phys. Lett. 85, 2774 (2004).en_US
dc.identifier.citedreferenceL. Bellaiche, S.-H. Wei, and A. Zunger, Phys. Rev. B 54, 17568 (1996).en_US
dc.identifier.citedreferenceN. Tit and M. W. C. Dharma-wardana, Appl. Phys. Lett. 76, 3576 (2000).en_US
dc.identifier.citedreferenceX. W. Lin, M. Behar, R. Maltez, W. Swider, Z. Liliental-Weber, and J. Washburn, Appl. Phys. Lett. 67, 2699 (1995).en_US
dc.identifier.citedreferenceS. Amine, G. B. Assayag, C. Bonafos, B. de Mauduit, H. Hidriss, and A. Claverie, Mater. Sci. Eng. B 93, 10 (2002).en_US
dc.identifier.citedreferenceA. K. Sharma and P. J. Reddy, Phys. Status Solidi A 61, 295 (1980).en_US
dc.identifier.citedreferenceA. S. Deev, P. A. Svetashov, N. A. Skakun, A. N. Grigor’ev, V. V. Ruzhitskij, V. A. Olejnik, and A. Ya. Grinchenko, Radiat. Eff. Defects Solids 114, 199 (1990).en_US
dc.identifier.citedreferenceA. Aydinli and A. V. Drigo, Radiat. Eff. Defects Solids 113, 269 (1990).en_US
dc.identifier.citedreferenceF. Frost, A. Schindler, and F. Bigl, Semicond. Sci. Technol. 13, 523 (1998).en_US
dc.identifier.citedreferenceJ.-D. Hecht, F. Frost, D. Hirsch, H. Neumann, A. Schindler, A. B. Preobrajenski, and T. Chassé, J. Appl. Phys. 90, 6066 (2001).en_US
dc.identifier.citedreferenceImplantation Science Corp., Wakefield, MA 01880.en_US
dc.identifier.citedreferenceJ. Ziegler, IBM Corp.en_US
dc.identifier.citedreferenceG. Amsel, J. P. Nadai, E. d’Artemare, D. David, E. Girard, and J. Moulin, Nucl. Instrum. Methods 92, 481 (1971).en_US
dc.identifier.citedreferenceD. K. Sadana, T. Sands, and J. Washburn, Appl. Phys. Lett. 44, 623 (1984).en_US
dc.identifier.citedreferenceD.K. Brice, Ion Implantation Range and Energy Deposition Distributions (Plenum, New York, 1975), Vol. 1.en_US
dc.identifier.citedreferenceD.V. Morgan and P.D. Taylor, in Ion Implantation in Semiconductors 1976, edited by F. Chernow, J. A. Borders, and D. K. Brice (Plenum, New York, 1977), p. 557.en_US
dc.identifier.citedreferenceJ. Jasinski, K. M. Yu, W. Walukiewicz, J. Washburn, and Z. Liliental-Weber, Appl. Phys. Lett. 79, 931 (2001).en_US
dc.identifier.citedreferenceJ. Jasinski, Z. Liliental-Weber, J. Washburn, H. H. Tan, C. Jagadish, A. Krotkus, S. Marcinkevicius, and M. Kaminska, J. Electron. Mater. 26, 449 (1997).en_US
dc.identifier.citedreferenceO. W. Holland, T. P. Sjoreen, D. Fathy, and J. Narayan, Appl. Phys. Lett. 45, 1081 (1984).en_US
dc.identifier.citedreferenceR. A. Brown and J. S. Williams, Phys. Rev. B 55, 12852 (1997).en_US
dc.identifier.citedreferenceJ. C. Bourgoin, H. J. von Bardeleben, and D. Stiévenard, J. Appl. Phys. 64, R65 (1988).en_US
dc.identifier.citedreferenceI. Yonenaga and K. Sumino, J. Appl. Phys. 65, 85 (1989).en_US
dc.identifier.citedreferenceF. L. Vook and H. J. Stein, Radiat. Eff. 2, 23 (1969).en_US
dc.identifier.citedreferenceR. A. Brown and J. S. Williams, J. Appl. Phys. 81, 7681 (1997).en_US
dc.identifier.citedreferenceR. A. Brown and J. S. Williams, J. Appl. Phys. 83, 7533 (1998).en_US
dc.identifier.citedreferenceSee, for example, O. Hellman, Mater. Sci. Eng. R 16, 1 (1996), and references therein.en_US
dc.identifier.citedreferenceP. W. Voorhees, J. Stat. Phys. 38, 231 (1985).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.