Show simple item record

Magnetic alignment of carbon nanofibers in polymer composites and anisotropy of mechanical properties

dc.contributor.authorShi, Dongluen_US
dc.contributor.authorHe, Pengen_US
dc.contributor.authorLian, Jieen_US
dc.contributor.authorChaud, Xavieren_US
dc.contributor.authorBud’ko, Sergey L.en_US
dc.contributor.authorBeaugnon, Ericen_US
dc.contributor.authorWang, L. M.en_US
dc.contributor.authorEwing, Rodney C.en_US
dc.contributor.authorTournier, Roberten_US
dc.date.accessioned2011-11-15T16:05:33Z
dc.date.available2011-11-15T16:05:33Z
dc.date.issued2005-03-15en_US
dc.identifier.citationShi, Donglu; He, Peng; Lian, Jie; Chaud, Xavier; Bud’ko, Sergey L.; Beaugnon, Eric; Wang, L. M.; Ewing, Rodney C.; Tournier, Robert (2005). "Magnetic alignment of carbon nanofibers in polymer composites and anisotropy of mechanical properties." Journal of Applied Physics 97(6): 064312-064312-5. <http://hdl.handle.net/2027.42/87644>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87644
dc.description.abstractEngineering applications of carbon nanofibers and nanotubes require their alignment in specific directions. Single-walled carbon nanotubes can be aligned in a magnetic field due to the presence of small amounts of catalyst elements, such as Ni and Co. However, for carbon nanofibers, their extremely low magnetic susceptibility is not sufficient for magnetically induced alignment. We present a method of solution-coating of NiO and CoO onto the surface of the carbon nanofibers. Due to the NiO- and CoO-coating, these nanofibers can be well aligned in the polymer composites under moderate magnetic field (3 T). Both transmission electron microscopy and scanning electron microscopy results show the well-aligned nanofibers in a polymer matrix. Mechanical testing shows a pronounced anisotropy in tensile strength in directions normal (12.1 MPa) and parallel (22 MPa) to the applied field, resulting from the well-aligned nanofibers in the polymer matrix. The mechanism of magnetic alignment due to coating of NiO and CoO on the nanofiber surface is discussed.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleMagnetic alignment of carbon nanofibers in polymer composites and anisotropy of mechanical propertiesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Geological Sciences and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Geological Sciences and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherDepartment of Chemical and Materials Engineering, and Department of Mechanical Engineering, University of Cincinnati, Cincinnati, Ohio 45221en_US
dc.contributor.affiliationotherConsortium de Recherches pour l’Emergence de Technologies Avancées, CNRS, BP 166, F-38042 Grenoble Cedex 9, Franceen_US
dc.contributor.affiliationotherAmes Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011en_US
dc.contributor.affiliationotherConsortium de Recherches pour l’Emergence de Technologies Avancées, CNRS, BP 166, F-38042 Grenoble Cedex 9, Franceen_US
dc.contributor.affiliationotherConsortium de Recherches pour l’Emergence de Technologies Avancées, CNRS, BP 166, F-38042 Grenoble Cedex 9, Franceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87644/2/064312_1.pdf
dc.identifier.doi10.1063/1.1861143en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceS. Iijima, Nature (London) 354, 56 (1991).en_US
dc.identifier.citedreferenceR. H. Baughman, C. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. De Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, Science 284, 1340 (1999).en_US
dc.identifier.citedreferenceM. Gao, L. Dai, R. H. Baughman, G. M. Spinks, and G. G. Wallace, Proc. SPIE 3987, 18 (2000).en_US
dc.identifier.citedreferenceV. G. Hadjiev, M. N. Iliev, S. Arepalli, P. Nikolaev, and B. S. Files, Appl. Phys. Lett. 78, 3193 (2001).en_US
dc.identifier.citedreferenceC. Liu, H. M. Cheng, H. T. Cong, F. Li, G. Su, B. L. Zhou, and M. S. Dresselhaus, Adv. Mater. (Weinheim, Ger.) 12, 1190 (2000).en_US
dc.identifier.citedreferenceD. A. Walters, M. J. Casavant, X. C. Qin, C. B. Huffman, P. J. Boul, L. M. Ericson, E. H. Haroz, M. J. O’Connell, K. Smith, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett. 338, 14 (2001).en_US
dc.identifier.citedreferenceJ. Zhu, J. D. Kim, H. Q. Peng, J. L. Margrave, V. N. Khabashesku, and E. V. Barrera, Nano Lett. 3, 1107 (2003)en_US
dc.identifier.citedreferenceE. T. Tostenson and T. W. Chou, J. Phys. D 35, L-77 (2002).en_US
dc.identifier.citedreferenceM. Cadek, J. N. Coleman, V. Barron, K. Hedicke, and W. J. Blau, Appl. Phys. Lett. 81, 5123 (2002).en_US
dc.identifier.citedreferenceS. J. V. Frankland, V. M. Harik, G. M. Odegard, D. W. Brenner, and T. S. Gates, Compos. Sci. Technol. 63, 1655 (2003).en_US
dc.identifier.citedreferenceH. Garmestani, M. S. Al-Haik, K. Dahmen, R. Tannenbaum, D. Li, S. S. Sablin, and M. Y. Hussaini, Adv. Mater. (Weinheim, Ger.) 15, 1918 (2003).en_US
dc.identifier.citedreferenceE. S. Choi, J. S. Brooks, D. L. Eaton, M. S. Al-Haik, M. Y. Hussaini, H. Garmestani, D. Li, and K. Dahmen, J. Appl. Phys. 94, 6034 (2003).en_US
dc.identifier.citedreferenceT. Kimura, H. Ago, M. Tobita, S. Ohshima, M. Kyotani, and M. Yomura, Adv. Mater. (Weinheim, Ger.) 14, 1380 (2002).en_US
dc.identifier.citedreferenceJ. E. Fischer, W. Zhou, J. Vavro, M. C. Llaguno, C. Guthy, R. Haggenmueller, M. J. Casavant, D. E. Walters, and R. E. Smalley, J. Appl. Phys. 93, 2157 (2003).en_US
dc.identifier.citedreferenceF. Tsui, L. Jin, and O. Zhou, Appl. Phys. Lett. 76, 1452 (2000).en_US
dc.identifier.citedreferenceW. J. van Ooij, S. Eufinger, and T. H. Ridgway, Plasmas Polym. 1, 231 (1996).en_US
dc.identifier.citedreferenceD. Shi, J. Lian, P. He, L. M. Wang, W. J. Van Ooij, M. Schulz, Y. J. Liu, and D. B. Mast, Appl. Phys. Lett. 81, 5216 (2002).en_US
dc.identifier.citedreferenceD. Shi, J. Lian, P. He, L. M. Wang, M. Schultz, F. Xiao, L. Yang, and D. Mast, Appl. Phys. Lett. 83, 5301 (2003).en_US
dc.identifier.citedreferenceD. Shi, S. X. Wang, W. J. v. Ooij, L. M. Wang, J. G. Zhao, and Z. Yu, Appl. Phys. Lett. 78, 1243 (2001).en_US
dc.identifier.citedreferenceD. Shi, S. X. Wang, W. J. van Ooij, L. M. Wang, J. G. Zhao, and Z. Yu, J. Mater. Res. 17, 981 (2002).en_US
dc.identifier.citedreferenceD. Shi, P. He, J. Lian, L. M. Wang, and W. J. van Ooij, J. Mater. Res. 17, 2555 (2002).en_US
dc.identifier.citedreferenceApplied Sciences Inc., www.apsci.comen_US
dc.identifier.citedreferenceD. Halliday and R. Resnick, Fundamentals of Physics, 2nd ed. (Wiley, New York, 1981), p. 539.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.