Show simple item record

Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography

dc.contributor.authorSun, Yiruen_US
dc.contributor.authorForrest, Stephen R.en_US
dc.date.accessioned2011-11-15T16:07:46Z
dc.date.available2011-11-15T16:07:46Z
dc.date.issued2006-10-01en_US
dc.identifier.citationSun, Yiru; Forrest, Stephen R. (2006). "Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography." Journal of Applied Physics 100(7): 073106-073106-6. <http://hdl.handle.net/2027.42/87744>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87744
dc.description.abstractHigh efficiency white organic light emitting devices (WOLEDs) with optical outcoupling enhanced by hexagonal polymethylmethacrylate microlens arrays fabricated by imprint lithography on a glass substrate are demonstrated. Monte Carlo and finite difference time domain simulations of the emitted light are used to optimize the microlens design. The measured enhancement of light outcoupling and the angular dependence of the extracted light intensity are in agreement with the simulation. Using microlens arrays, we demonstrate a fluorescent/phosphorescent WOLED with a maximum external quantum efficiency of (14.3±0.3)%(14.3±0.3)% at 900 cd/m2900cd∕m2 and power efficiency of 21.6±0.5 lm/W21.6±0.5lm∕W at 220 cd/m2220cd∕m2. The electroluminescent spectra at viewing angles from normal to the substrate plane, to 60° off normal, remain almost unchanged, giving a color rendering index of 87.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleOrganic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithographyen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109; Department of Applied Physics, University of Michigan, Ann Arbor, Michigan 48109; and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherPrinceton Institute for the Science and Technology of Materials (PRISM), Princeton University, Princeton, New Jersey 08544 and Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87744/2/073106_1.pdf
dc.identifier.doi10.1063/1.2356904en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceV. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, Phys. Rev. B 58, 3730 (1998).en_US
dc.identifier.citedreferenceT. Shiga, H. Fujikawa, and Y. Taga, J. Appl. Phys. 93, 19 (2003).en_US
dc.identifier.citedreferenceJ. Feng, T. Okamoto, and S. Kawata, Appl. Phys. Lett. 87, 2411109 (2005).en_US
dc.identifier.citedreferenceT. Tsutsui, M. Yahiro, H. Yokogawa, and K. Kawano, Adv. Mater. (Weinheim, Ger.) 13, 1149 (2001).en_US
dc.identifier.citedreferenceJ. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, Appl. Phys. Lett. 77, 3340 (2000).en_US
dc.identifier.citedreferenceC. Hubert, C. Fiorini-Debuisschert, I. Hassiaoui, L. Rocha, P. Raimond, and J. M. Nunzi, Appl. Phys. Lett. 87, 191105 (2005).en_US
dc.identifier.citedreferenceM. H. Lu and J. C. Sturm, J. Appl. Phys. 91, 595 (2002).en_US
dc.identifier.citedreferenceS. Moller and S. R. Forrest, J. Appl. Phys. 91, 3324 (2002).en_US
dc.identifier.citedreferenceK. Yoshimoto, G. J. Papakonstantopoulos, J. F. Lutsko, and J. J. de Pablo, Phys. Rev. B 71, 184108 (2005).en_US
dc.identifier.citedreferenceA. Bietsch and B. Michel, J. Appl. Phys. 88, 4310 (2000).en_US
dc.identifier.citedreferenceY. Sun, N. C. Giebink, H. Kanno, B. W. Ma, M. E. Thompson, and S. R. Forrest, Nature (London) 440, 908 (2006).en_US
dc.identifier.citedreferenceFULLWAVE, Version 1.0, RSoft, Inc., Ossining, NY, 2000.en_US
dc.identifier.citedreferenceJ. Bruinink, Newsletter of the Society for Information Display Mid-Europe (2000), Chap. 9, pp. 1–3.en_US
dc.identifier.citedreferenceJ. Brandrup and E. H. Immergut, Polymer Handbook, 3rd ed. (Wiley, New York, 1989).en_US
dc.identifier.citedreferenceAZ Electronic Materials Corp., Somerville, NJ 08876.en_US
dc.identifier.citedreferenceG. Y. Jung, Z. Y. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, Langmuir 21, 1158 (2005).en_US
dc.identifier.citedreferenceS. Y. Chou, P. R. Krauss, and P. J. Renstrom, Science 272, 85 (1996).en_US
dc.identifier.citedreferenceHamamatsu S3584-08, Hamamatsu City, Shizuoka Pref, 430–8587, Japan.en_US
dc.identifier.citedreferenceS. R. Forrest, D. D. C. Bradley, and M. E. Thompson, Adv. Mater. (Weinheim, Ger.) 15, 1043 (2003).en_US
dc.identifier.citedreferenceM. K. Wei and I. L. Su, Opt. Express 12, 5777 (2004).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.