Show simple item record

Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition

dc.contributor.authorQi, Huanen_US
dc.contributor.authorMazumder, Jyotien_US
dc.contributor.authorKi, Hyungsonen_US
dc.date.accessioned2011-11-15T16:08:15Z
dc.date.available2011-11-15T16:08:15Z
dc.date.issued2006-07-15en_US
dc.identifier.citationQi, Huan; Mazumder, Jyotirmoy; Ki, Hyungson (2006). "Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition." Journal of Applied Physics 100(2): 024903-024903-11. <http://hdl.handle.net/2027.42/87766>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87766
dc.description.abstractThe coaxial laser cladding process is the heart of direct metal deposition (DMD). Rapid materials processing, such as DMD, is steadily becoming a tool for synthesis of materials, as well as rapid manufacturing. Mathematical models to develop the fundamental understanding of the physical phenomena associated with the coaxial laser cladding process are essential to further develop the science base. A three-dimensional transient model was developed for a coaxial powder injection laser cladding process. Physical phenomena including heat transfer, melting and solidification phase changes, mass addition, and fluid flow in the melt pool, were modeled in a self-consistent manner. Interactions between the laser beam and the coaxial powder flow, including the attenuation of beam intensity and temperature rise of powder particles before reaching the melt pool were modeled with a simple heat balance equation. The level-set method was implemented to track the free surface movement of the melt pool, in a continuous laser cladding process. The governing equations were discretized using the finite volume approach. Temperature and fluid velocity were solved for in a coupled manner. Simulation results such as the melt pool width and length, and the height of solidified cladding track were compared with experimental results and found to be reasonably matched.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleNumerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal depositionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCenter for Laser Aided Intelligent Manufacturing, Department of Mechanical Engineering, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48824en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87766/2/024903_1.pdf
dc.identifier.doi10.1063/1.2209807en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceJ. Mazumder, J. Choi, K. Nagarathnam, J. Koch, and D. Hetzner, JOM 49, 55 (1997).en_US
dc.identifier.citedreferenceR. Vilar, Materials Science Forum 301, 229 (1999).en_US
dc.identifier.citedreferenceJ. O. Milewski, G. K. Lewis, J. Fonseca, and R. B. Nemec, Mater. Manuf. Processes 15, 247 (2000).en_US
dc.identifier.citedreferenceJ. Mazumder and H. Qi, Proceedings of SPIE - The International Society for Optical Engineering, Proc. SPIE 5706, 38 (2005).en_US
dc.identifier.citedreferenceM. Picasso, C. F. Marsden, J. D. Wagniere, A. Frenk, and M. Rappaz, Mater. Manuf. Processes 25, 281 (1994).en_US
dc.identifier.citedreferenceJ. Jouvard, D. Grevey, F. Lemoine, and A. Vannes, J. Laser Appl. 9, 43 (1997).en_US
dc.identifier.citedreferenceA. F. A. Hoadley and M. Rappaz, Metall. Trans. B 23, 631 (1992).en_US
dc.identifier.citedreferenceV. Yevko, C. Park, G. Zak, T. Coyle, and B. Benhabib, Rapid Prototyping J. 4, 168 (1998).en_US
dc.identifier.citedreferenceA. F. H. Kaplan and G. Groboth, J. Manuf. Sci. Eng. 123, 609 (2001).en_US
dc.identifier.citedreferenceE. Toyserkani, A. Khajepour, and S. Corbin, J. Laser Appl. 15, 153 (2003).en_US
dc.identifier.citedreferenceG. Zhao, C. Cho, and J. Kim, Int. J. Mech. Sci. 45, 777 (2003).en_US
dc.identifier.citedreferenceY. Huang, G. Liang, and J. Su, Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials (Eng. Ed) 11, 13 (2004).en_US
dc.identifier.citedreferenceW. D. Bennon and F. P. Incropera, Int. J. Heat Mass Transfer 30, 2161 (1987).en_US
dc.identifier.citedreferenceS. Osher and J. A. Sethian, J. Comput. Phys. 79, 12 (1988).en_US
dc.identifier.citedreferenceD. Adalsteinsson and J. Sethian, J. Comput. Phys. 122, 348 (1995).en_US
dc.identifier.citedreferenceT. Chande and J. Mazumder, J. Appl. Phys. 57, 2226 (1985).en_US
dc.identifier.citedreferenceJ. M. Lin, J. Laser Appl. 12, 28 (2000).en_US
dc.identifier.citedreferenceV. R. Voller and C. R. Swaminathan, Numer. Heat Transfer, Part B 19, 175 (1991).en_US
dc.identifier.citedreferenceV. R. Voller, A. D. Brent, and C. Prakash, Int. J. Heat Mass Transfer 32, 1719 (1989).en_US
dc.identifier.citedreferenceS. Asai and I. Muchi, Trans. Iron Steel Inst. Jpn. 18, 90 (1978).en_US
dc.identifier.citedreferenceJ. P. Vandoormaal and G. D. Raithby, Numer. Heat Transfer 7, 147 (1984).en_US
dc.identifier.citedreferenceH. Gedda, J. Powell, G. Wahlstrom, W. B. Li, H. Engstrom, and C. Magnusson, J. Laser Appl. 14, 78 (2002).en_US
dc.identifier.citedreferenceM. Doubenskaia, P. Bertrand, and I. Smurov, Thin Solid Films 453&454, 477 (2004).en_US
dc.identifier.citedreferenceJ. D’souza, Ms thesis, Mechanical Engineering Department, The University of Michigan, 2001.en_US
dc.identifier.citedreferenceT. Hesse, Ms thesis, Mechanical Engineering Department, The University of Michigan, 2000.en_US
dc.identifier.citedreferenceH. Ki, P. Mohanty, and J. Mazumder, Metall. Mater. Trans. A 33, 1817 (2002).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.