Show simple item record

Vertically aligned tin-doped indium oxide nanowire arrays: Epitaxial growth and electron field emission properties

dc.contributor.authorWan, Q.en_US
dc.contributor.authorFeng, P.en_US
dc.contributor.authorWang, T. H.en_US
dc.date.accessioned2011-11-15T16:08:48Z
dc.date.available2011-11-15T16:08:48Z
dc.date.issued2006-09-18en_US
dc.identifier.citationWan, Q.; Feng, P.; Wang, T. H. (2006). "Vertically aligned tin-doped indium oxide nanowire arrays: Epitaxial growth and electron field emission properties." Applied Physics Letters 89(12): 123102-123102-3. <http://hdl.handle.net/2027.42/87793>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87793
dc.description.abstractVertically aligned tin-doped indium oxide (ITO) single-crystalline nanowire arrays are epitaxially grown on ITO/yttrium stabilized zirconia substrates by vapor transport method. Vacuum electron field emission properties of the aligned ITO nanowires are investigated. The turn-on electrical field at a current density of 1 μA/cm21μA∕cm2 is about 2.0 V/μm2.0V∕μm, and the lowest vacuum for an obvious emission is 1×10−1 Pa1×10−1Pa. The good performance of field emission is attributed to the vertically aligned morphology, which has a stronger local electric field due to their orientation parallel to the electric-field direction.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleVertically aligned tin-doped indium oxide nanowire arrays: Epitaxial growth and electron field emission propertiesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMicro-Nano Technologies Research Center, Hunan University, Changsha 410082, People’s Republic of China and Department of Electrical Engineering and Computer Science, The University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122en_US
dc.contributor.affiliationotherMicro-Nano Technologies Research Center, Hunan University, Changsha 410082, People’s Republic of Chinaen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87793/2/123102_1.pdf
dc.identifier.doi10.1063/1.2345278en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceN. Taga, H. Odaka, Y. Shigesato, I. Yasui, M. Kamei, and T. E. Haynes, J. Appl. Phys. 80, 978 (1996).en_US
dc.identifier.citedreferenceQ. Wan, Z. T. Zong, S. L. Feng, and T. H. Wang, Appl. Phys. Lett. 85, 4759 (2004).en_US
dc.identifier.citedreferenceS. Y. Li, C. Y. Lee, P. Lin, and T. Y. Tseng, Nanotechnology 16, 451 (2005).en_US
dc.identifier.citedreferenceY. Q. Chen, J. Jiang, B. Wang, and J. G. Hou, J. Phys. D 37, 3319 (2004).en_US
dc.identifier.citedreferenceQ. Wan, M. Wei, D. Zhi, J. L. MacManus-Driscoll, and M. G. Blamire, Adv. Mater. (Weinheim, Ger.) 18, 234 (2006).en_US
dc.identifier.citedreferenceQ. Wan, K. Yu, T. H. Wang, and C. L. Lin, Appl. Phys. Lett. 83, 2253 (2003).en_US
dc.identifier.citedreferenceQ. H. Li, Q. Wan, Y. J. Chen, T. H. Wang, H. B. Jia, and D. P. Yu, Appl. Phys. Lett. 85, 636 (2004).en_US
dc.identifier.citedreferenceL. F. Dong, J. Jiao, D. W. Tuggle, J. M. Petty, S. A. Elliff, and M. Coulter, Appl. Phys. Lett. 82, 1096 (2003).en_US
dc.identifier.citedreferenceC. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, Appl. Phys. Lett. 81, 3648 (2002).en_US
dc.identifier.citedreferenceY. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu, Appl. Phys. Lett. 83, 144 (2003).en_US
dc.identifier.citedreferenceC. X. Xu and X. W. Sun, Appl. Phys. Lett. 83, 3806 (2003).en_US
dc.identifier.citedreferenceJ. Zhou, S. Z. Deng, N. S. Xu, J. Chen, and J. C. She, Appl. Phys. Lett. 83, 2653 (2003).en_US
dc.identifier.citedreferenceY. B. Li, Y. Bando, D. Golberg, and K. Kurashima, Appl. Phys. Lett. 81, 5048 (2002).en_US
dc.identifier.citedreferenceR. S. Chen, Y. S. Huang, Y. M. Liang, C. S. Hsieh, D. S. Tsai, and K. K. Tiong, Appl. Phys. Lett. 84, 1552 (2004).en_US
dc.identifier.citedreferenceC. S. Hsieh, D. S. Tsai, R. S. Chen, and Y. S. Huang, Appl. Phys. Lett. 85, 3860 (2004).en_US
dc.identifier.citedreferenceChien-Te Hsieh, Jin-Ming Chen, Hung-Hsiao Lin, and Han-Chang Shih, Appl. Phys. Lett. 83, 3383 (2003).en_US
dc.identifier.citedreferenceJ. Chen, S. Z. Deng, N. S. Xu, W. Zhang, X. Wen, and S. Yang, Appl. Phys. Lett. 83, 746 (2003).en_US
dc.identifier.citedreferenceS. Q. Li, Y. X. Liang, and T. H. Wang, Appl. Phys. Lett. 87, 43104 (2005).en_US
dc.identifier.citedreferenceR. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).en_US
dc.identifier.citedreferenceR. H. Fowler and L. W. Nordheim, Proc. R. Soc. London, Ser. A 119, 173 (1928).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.