Show simple item record

Enhanced optical field intensity distribution in organic photovoltaic devices using external coatings

dc.contributor.authorO’Connor, Brendanen_US
dc.contributor.authorAn, Kwang H.en_US
dc.contributor.authorPipe, Kevin P.en_US
dc.contributor.authorZhao, Yiyingen_US
dc.contributor.authorShtein, Maxen_US
dc.date.accessioned2011-11-15T16:09:12Z
dc.date.available2011-11-15T16:09:12Z
dc.date.issued2006-12-04en_US
dc.identifier.citationO’Connor, Brendan; An, Kwang H.; Pipe, Kevin P.; Zhao, Yiying; Shtein, Max (2006). "Enhanced optical field intensity distribution in organic photovoltaic devices using external coatings." Applied Physics Letters 89(23): 233502-233502-3. <http://hdl.handle.net/2027.42/87812>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87812
dc.description.abstractAn external dielectric coating is shown to enhance energy conversion in an organic photovoltaic cell with metal anode and cathode by increasing the optical field intensity in the organic layers. Improved light incoupling in the device is modeled using transfer matrix simulations and is confirmed by in situ measurement of the photocurrent during growth of the coating. The optical field intensity in optimized cell geometries is predicted to exceed that in analogous devices using indium tin oxide, both cell types having equivalent anode sheet resistance, suggesting a broader range of compatible substrates (e.g., metal foils) and device processing techniques.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEnhanced optical field intensity distribution in organic photovoltaic devices using external coatingsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mechanical Engineering, The University of Michigan, Ann Harbor, Michigan 48109-2125en_US
dc.contributor.affiliationumDepartment of Material Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2125en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87812/2/233502_1.pdf
dc.identifier.doi10.1063/1.2399937en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceC. W. Tang, Appl. Phys. Lett. 48, 183 (1986).en_US
dc.identifier.citedreferenceP. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).en_US
dc.identifier.citedreferenceS. R. Forrest, MRS Bull. 30, 28 (2005).en_US
dc.identifier.citedreferenceH. Hoppe and N. S. Sariciftci, J. Mater. Res. 19, 1924 (2004).en_US
dc.identifier.citedreferenceY. Shao and Y. Yang, Adv. Mater. (Weinheim, Ger.) 17, 2841 (2005).en_US
dc.identifier.citedreferenceP. Peumans, S. Uchida, and S. R. Forrest, Nature (London) 425, 158 (2003).en_US
dc.identifier.citedreferenceG. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).en_US
dc.identifier.citedreferenceK. M. Coakley and M. D. McGehee, Chem. Mater. 16, 4533 (2004).en_US
dc.identifier.citedreferenceP. Peumans, V. Bulovic, and S. R. Forrest, Appl. Phys. Lett. 76, 2650 (2000).en_US
dc.identifier.citedreferenceB. P. Rand, J. Li, J. G. Xue, R. J. Holmes, M. E. Thompson, and S. R. Forrest, Adv. Mater. (Weinheim, Ger.) 17, 2714 (2005).en_US
dc.identifier.citedreferenceJ. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong, and A. J. Heeger, Adv. Mater. (Weinheim, Ger.) 18, 572 (2006).en_US
dc.identifier.citedreferenceK. Ishikawa, C. J. Wen, K. Yamada, and T. Okubo, J. Chem. Eng. Jpn. 37, 645 (2004).en_US
dc.identifier.citedreferenceJenny Nelson, The Physics of Solar Cells (Imperial College Press, London, 2003), Vol. 1, p. 363.en_US
dc.identifier.citedreferenceH. Riel, S. Karg, T. Beierlein, B. Ruhstaller, and W. Riess, Appl. Phys. Lett. 82, 466 (2003).en_US
dc.identifier.citedreferenceL. A. A. Pettersson, L. S. Roman, and O. Inganas, J. Appl. Phys. 86, 487 (1999).en_US
dc.identifier.citedreferenceB. P. Rand, P. Peumans, and S. R. Forrest, J. Appl. Phys. 96, 7519 (2004).en_US
dc.identifier.citedreferenceI. Sokolik, R. Priestley, A. D. Walser, R. Dorsinville, and C. W. Teng, Appl. Phys. Lett. 69, 4168 (1996).en_US
dc.identifier.citedreferenceW. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, Microelectron. Eng. 76, 146 (2004).en_US
dc.identifier.citedreferenceA. F. Mayadas, M. Shatzkes, and J. F. Janak, Appl. Phys. Lett. 14, 345 (1969).en_US
dc.identifier.citedreferenceM. Deopura, C. K. Ullal, B. Temelkuran, and Y. Fink, Opt. Lett. 26, 1197 (2001).en_US
dc.identifier.citedreferenceD. R. Cairns and G. P. Crawford, Proc. IEEE 93, 1451 (2005).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.