Show simple item record

Hexagonal close-packed Ni nanostructures grown on the (001) surface of MgO

dc.contributor.authorTian, Weien_US
dc.contributor.authorSun, H. P.en_US
dc.contributor.authorPan, Xiaoqingen_US
dc.contributor.authorYu, J. H.en_US
dc.contributor.authorYeadon, M.en_US
dc.contributor.authorBoothroyd, C. B.en_US
dc.contributor.authorFeng, Y. P.en_US
dc.contributor.authorLukaszew, Rosa A.en_US
dc.contributor.authorClarke, Royen_US
dc.date.accessioned2011-11-15T16:09:54Z
dc.date.available2011-11-15T16:09:54Z
dc.date.issued2005-03-28en_US
dc.identifier.citationTian, W.; Sun, H. P.; Pan, X. Q.; Yu, J. H.; Yeadon, M.; Boothroyd, C. B.; Feng, Y. P.; Lukaszew, R. A.; Clarke, R. (2005). "Hexagonal close-packed Ni nanostructures grown on the (001) surface of MgO." Applied Physics Letters 86(13): 131915-131915-3. <http://hdl.handle.net/2027.42/87846>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87846
dc.description.abstractWe report the in situ microscopy observation of an unnatural phase of Ni, a highly strained hexagonal close-packed (hcp) form which we believe is stabilized by heteroepitaxial growth on the (001) face of MgO. We find that the nanosized hcp nickel islands transform into the normal face-centered cubic structure when the size of the islands exceeds a critical value (about 2.5 nm thick with a lateral size of ∼ 5 nm∼5nm). The structural transition proceeds via a martensitic change in the stacking sequence of the close-packed planes. The formation of hcp Ni nanostructures with an unusually large crystallographic c/ac∕a ratio ( ∼ 6%∼6% larger than ideal hcp) is very interesting for spintronic and recording applications where large uniaxial anisotropies are desirable.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleHexagonal close-packed Ni nanostructures grown on the (001) surface of MgOen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-1236en_US
dc.contributor.affiliationumDepartment of Physics, University of Michigan, Ann Arbor, Michigan 48109-1120en_US
dc.contributor.affiliationotherInstitute of Materials Research and Engineering, 3 Research Link, Singapore 117602, Singaporeen_US
dc.contributor.affiliationotherDepartment of Physics, National University of Singapore, Singapore 119260, Singaporeen_US
dc.contributor.affiliationotherDepartment of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87846/2/131915_1.pdf
dc.identifier.doi10.1063/1.1890472en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceH. L. Skriver, Phys. Rev. B 31, 1909 (1985).en_US
dc.identifier.citedreferenceA. T. Paxton, M. Methfessel, and H. M. Polatoglou, Phys. Rev. B 41, 8127 (1990).en_US
dc.identifier.citedreferenceG. A. Prinz, Phys. Rev. Lett. 54, 1051 (1985).en_US
dc.identifier.citedreferenceN. Metoki, W. Donner, and H. Zabel, Phys. Rev. B 49, 17351 (1994).en_US
dc.identifier.citedreferenceB. Heinrich, S. T. Purcell, J. R. Dutcher, K. B. Urquhart, J. F. Cochran, and A. S. Arrott, Phys. Rev. B 38, 12879 (1988).en_US
dc.identifier.citedreferenceW. X. Tang, D. Qian, D. Wu, Y. Z. Wu, G. S. Gong, X. F. Jin, S. M. Chen, X. M. Jiang, X. X. Zhang, and Z. Zhang, J. Magn. Magn. Mater. 240, 404 (2002).en_US
dc.identifier.citedreferenceJ. G. Wright and J. Goddard, Philos. Mag. 11, 485 (1965).en_US
dc.identifier.citedreferenceS. Illy, O. Tillement, F. Machizaud, J. M. Dubois, F. Massicot, Y. Fort, and J. Ghanbaja, Philos. Mag. A 79, 1021 (1999).en_US
dc.identifier.citedreferenceG. Carturan, G. Cocco, S. Enzo, R. Ganzerla, and M. Lenarda, Mater. Lett. 7, 47 (1988).en_US
dc.identifier.citedreferenceR.W. G. Wyackoff, Crystal Structure (Interscience, New York, 1953), Vol. 3.en_US
dc.identifier.citedreferenceR.W. G. Wyackoff, Crystal Structure (Interscience, New York, 1953), Vol. 1.en_US
dc.identifier.citedreferenceG. B. Olson and M. Cohen, Metall. Trans. A 7, 1897 (1976).en_US
dc.identifier.citedreferenceM. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).en_US
dc.identifier.citedreferenceP. Hohenberg and W. Kohn, Phys. Rev. A 136, 864 (1964);W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).en_US
dc.identifier.citedreferenceD. Vanderbilt, Phys. Rev. B 41, 7892 (1990).en_US
dc.identifier.citedreferenceJ. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).en_US
dc.identifier.citedreferenceH. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).en_US
dc.identifier.citedreferenceB. I. Min, T. Oguchi, and A. J. Freeman, Phys. Rev. B 33, 7852 (1986).en_US
dc.identifier.citedreferenceH.P. Sun, Y.B. Chen, and X.Q. Pan (unpublished).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.