Show simple item record

NMR paramagnetic relaxation due to the S = 5/2S=5∕2 complex, Fe(III)-(tetra-p-sulfonatophenyl)porphyrin: Central role of the tetragonal fourth-order zero-field splitting interaction

dc.contributor.authorSchaefle, Nathanielen_US
dc.contributor.authorSharp, Robert R.en_US
dc.date.accessioned2011-11-15T16:10:12Z
dc.date.available2011-11-15T16:10:12Z
dc.date.issued2005-05-08en_US
dc.identifier.citationSchaefle, Nathaniel; Sharp, Robert (2005). "NMR paramagnetic relaxation due to the S = 5/2S=5∕2 complex, Fe(III)-(tetra-p-sulfonatophenyl)porphyrin: Central role of the tetragonal fourth-order zero-field splitting interaction." The Journal of Chemical Physics 122(18): 184501-184501-11. <http://hdl.handle.net/2027.42/87861>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87861
dc.description.abstractThe metalloporphyrins, Me-TSPP [Me = Cr(III)Me=Cr(III), Mn(III), Mn(II), Fe(III), and TSPP=meso-(tetra-pp-sulfonatophenyl)porphyrin], which possess electron spins S = 3/2S=3∕2, 2, 5/25∕2, and 5/25∕2, respectively, comprise an important series of model systems for mechanistic studies of NMR paramagnetic relaxation enhancement (NMR-PRE). For these S>1/2S>1∕2 spin systems, the NMR-PRE depends critically on the detailed form of the zero-field splitting (zfs) tensor. We report the results of experimental and theoretical studies of the NMR relaxation mechanism associated with Fe(III)-TSPP, a spin 5/25∕2 complex for which the overall zfs is relatively large (D ≈ 10 cm−1)(D≈10cm−1). A comparison of experimental data with spin dynamics simulations shows that the primary determinant of the shape of the magnetic relaxation dispersion profile of the water proton R1R1 is the tetragonal fourth-order component of the zfs tensor. The relaxation mechanism, which has not previously been described, is a consequence of zfs-induced mixing of the spin eigenfunctions of adjacent Kramers doublets. We have also investigated the magnetic-field dependence of electron-spin relaxation for S = 5/2S=5∕2 in the presence of a large zfs, such as occurs in Fe(III)-TSPP. Calculations show that field dependence of this kind is suppressed in the vicinity of the zfs limit, in agreement with observation.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleNMR paramagnetic relaxation due to the S = 5/2S=5∕2 complex, Fe(III)-(tetra-p-sulfonatophenyl)porphyrin: Central role of the tetragonal fourth-order zero-field splitting interactionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.identifier.pmid15918723en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87861/2/184501_1.pdf
dc.identifier.doi10.1063/1.1886748en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceS. M. Abernathy, J. C. Miller, L. L. Lohr, and R. R. Sharp, J. Chem. Phys. 109, 4035 (1998).en_US
dc.identifier.citedreferenceN. Schaefle and R. Sharp, J. Phys. Chem. A, ASAP article (2005).en_US
dc.identifier.citedreferenceN. Schaefle and R. Sharp, J. Phys. Chem. A, ASAP article (2005).en_US
dc.identifier.citedreferenceJ. C. Miller and R. R. Sharp, J. Phys. Chem. A, 104, 4889 (2000).en_US
dc.identifier.citedreferenceL. H. Bryant, M. W. Hodges, and R. G. Bryant, Inorg. Chem. 38, 1002 (1999).en_US
dc.identifier.citedreferenceN. Bloembergen and L. O. Morgan, J. Chem. Phys. 34, 842 (1961).en_US
dc.identifier.citedreferenceNuclear-electron hyperfine couplings also produce level splittings in the absence of a Zeeman field. These terms, which are of odd order in the electron-spin operators, are not included in Eq. (1b).en_US
dc.identifier.citedreferenceA. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Dover, New York, 1986).en_US
dc.identifier.citedreferenceC. Rudowicz, J. Phys.: Condens. Matter 12, L417 (2000).en_US
dc.identifier.citedreferenceS. Rast, P. H. Fries, and E. Belorizky, J. Chem. Phys. 113, 8724 (2000).en_US
dc.identifier.citedreferenceS. Rast, P. H. Fries, E. Belorizky, A. Borel, L. Helm, and A. E. Merbach, J. Chem. Phys. 115, 7554 (2001).en_US
dc.identifier.citedreferenceE. Belorizky and P. H. Fries, Phys. Chem. Chem. Phys. 6, 2341 (2004).en_US
dc.identifier.citedreferenceS. Rast, A. Borel, E. Belorizky, P. H. Fries, and A. E. Merbach, J. Am. Chem. Soc. 123, 2637 (2001).en_US
dc.identifier.citedreferenceZ. Luz and S. Meiboom, J. Chem. Phys. 40, 2686 (1964).en_US
dc.identifier.citedreferenceI. Solomon, Phys. Rev. 99, 555 (1955).en_US
dc.identifier.citedreferenceN. Bloembergen, J. Chem. Phys. 27, 572 (1957);27, 595 (1957).en_US
dc.identifier.citedreferenceL. Banci, I. Bertini, F. Briganti, and C. Luchinat, J. Magn. Reson. (1969-1992) 66, 58 (1986).en_US
dc.identifier.citedreferenceI. Bertini, C. Luchinat, M. Mancini, and G. Spina, J. Magn. Reson. (1969-1992) 59, 213 (1984).en_US
dc.identifier.citedreferenceN. Benetis, J. Kowalewski, L. Nordenskioeld, H. Wennerstroem, and P. O. Westlund, Mol. Phys. 48, 329 (1983).en_US
dc.identifier.citedreferenceN. Benetis, J. Kowalewski, L. Nordenskioeld, H. Wennerstroem, and P.-O. Westlund, J. Magn. Reson. (1969-1992) 58, 261 (1984).en_US
dc.identifier.citedreferenceJ. Kowalewski, L. Nordenskiold, N. Benetis, and P.-O. Westlund, Prog. Nucl. Magn. Reson. Spectrosc. 17, 141 (1985).en_US
dc.identifier.citedreferenceP.-O. Westlund, H. Wennerstrom, L. Nordenskiold, J. Kowalewski, and N. Benetis, J. Magn. Reson. (1969-1992) 59, 91 (1984).en_US
dc.identifier.citedreferenceP.-O. Westlund, N. Benetis, and H. Wennerstrom, Mol. Phys. 61, 177 (1987).en_US
dc.identifier.citedreferenceT. Larsson, P.-O. Westlund, J. Kowalewski, and S. H. Koenig, J. Chem. Phys. 101, 1116 (1994).en_US
dc.identifier.citedreferenceP.-O. Westlund and P. T. Larsson, Acta Chem. Scand. 45, 11 (1991).en_US
dc.identifier.citedreferenceJ. Kowalewski, C. Luchinat, T. Nilsson, and G. Parigi, J. Phys. Chem. A 106, 7376 (2002).en_US
dc.identifier.citedreferenceD. Kruk and J. Kowalewski, J. Chem. Phys. 116, 4079 (2002).en_US
dc.identifier.citedreferenceT. Nilsson, J. Svoboda, P.-O. Westlund, and J. Kowalewski, J. Chem. Phys. 109, 6364 (1998).en_US
dc.identifier.citedreferenceD. Kruk and J. Kowalewski, Mol. Phys. 101, 2861 (2003).en_US
dc.identifier.citedreferenceT. Nilsson and J. Kowalewski, J. Magn. Reson. 146, 345 (2000).en_US
dc.identifier.citedreferenceT. Nilsson and J. Kowalewski, Mol. Phys. 98, 1617 (2000).en_US
dc.identifier.citedreferenceD. Kruk, T. Nilsson, and J. Kowalewski, Phys. Chem. Chem. Phys. 3, 4907 (2001).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Chem. Phys. 93, 6921 (1990).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Chem. Phys. 98, 912 (1993).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Chem. Phys. 98, 6092 (1993).en_US
dc.identifier.citedreferenceJ.-M. Bovet and R. R. Sharp, J. Chem. Phys. 99, 18 (1993).en_US
dc.identifier.citedreferenceS. M. Abernathy and R. R. Sharp, J. Chem. Phys. 106, 9032 (1997).en_US
dc.identifier.citedreferenceR. Sharp, S. M. Abernathy, and L. L. Lohr, J. Chem. Phys. 107, 7620 (1997).en_US
dc.identifier.citedreferenceR. Sharp, L. Lohr, and J. Miller, Prog. Nucl. Magn. Reson. Spectrosc. 38, 115 (2001).en_US
dc.identifier.citedreferenceN. Schaefle and R. Sharp, J. Chem. Phys. 121, 5387 (2004).en_US
dc.identifier.citedreferenceR. Sharp, J. Magn. Reson. (1969-1992) 100, 491 (1992).en_US
dc.identifier.citedreferenceN. Schaefle and R. Sharp, J. Magn. Reson. (submitted).en_US
dc.identifier.citedreferenceE. N. Ivanov, Zh. Eksp. Teor. Fiz. 45, 1509 (1963)[Sov. Phys. JETP 18, 1041 (1964)].en_US
dc.identifier.citedreferenceJ. C. Miller, N. Schaefle, and R. Sharp, Magn. Reson. Chem. 41, 806 (2003).en_US
dc.identifier.citedreferenceM. Odelius, C. Ribbing, and J. Kowalewski, J. Chem. Phys. 103, 1800 (1995).en_US
dc.identifier.citedreferenceM. Odelius, C. Ribbing, and J. Kowalewski, J. Chem. Phys. 104, 3181 (1996).en_US
dc.identifier.citedreferenceS. Fries, E. Belorizky, A. Borel, L. Helm, and A. E. Merbach, J. Chem. Phys. 115, 7554 (2001).en_US
dc.identifier.citedreferenceI. Bertini, O. Galas, C. Luchinat, and G. Parigi, J. Magn. Reson., Ser. A 113, 151 (1995).en_US
dc.identifier.citedreferenceP.-O. Westlund, Mol. Phys. 85, 1165 (1995).en_US
dc.identifier.citedreferenceR. Sharp and L. L. Lohr, J. Chem. Phys. 115, 5005 (2001).en_US
dc.identifier.citedreferenceR. Sharp, J. Magn. Reson. 154, 269 (2002).en_US
dc.identifier.citedreferenceS. A. Al’tshuler and K. A. Valiev, Sov. Phys. JETP 35, 661 (1959).en_US
dc.identifier.citedreferenceD. Kruk, J. Kowalewski, and P.-O. Westlund, J. Chem. Phys. 121, 2215 (2004).en_US
dc.identifier.citedreferenceP.-O. Westlund, J. Chem. Phys. 108, 4945 (1998).en_US
dc.identifier.citedreferenceI. Bertini, J. Kowalewski, C. Luchinat, T. Nilsson, and G. Parigi, J. Chem. Phys. 111, 5795 (1999).en_US
dc.identifier.citedreferenceY. Zhou, B. E. Bowler, G. R. Eaton, and S. Eaton, J. Magn. Reson. 144, 115 (2000).en_US
dc.identifier.citedreferenceFormulations of both SLE and MC have been developed, which are valid in the regime of slow zfs distortional motions.en_US
dc.identifier.citedreferenceR. R. Sharp, J. Chem. Phys. 98, 2507 (1993).en_US
dc.identifier.citedreferenceFar IR has been used to detect the mS = ±1/2 to mS = ±3/2mS=±1∕2tomS=±3∕2 transition in 18 high-spin ferric porphyinates with fluoro-, chloro-, iodo-, and azido ligands, as well as in ferrimyoglobin with fluoro- and aqua ligands, and in ferrihemoglobin with a fluoroligand;P. L. Richards, W. S. Caughey, H. Eberspaecher, G. Feher, and M. Malley, J. Chem. Phys. 47, 1187 (1967);G. C. Brackett, P. L. Richards, and W. S. Caughey, 54, 4383 (1971);G. Feher and P.L. Richards, Proceeding of the Second International Conference on Magnetic Resonance in Biological Systems, Wenner-Gren Center, Stockholm, June 1966 (Pergamon Press, New York, 1967), p. 141.en_US
dc.identifier.citedreferenceH. Uenoyama, T. Hzuka, H. Morimoto, and M. Kotoni, Biochim. Biophys. Acta 160, 159 (1968).en_US
dc.identifier.citedreferenceG. Lang, B. Boso, B. S. Erler, and C. A. Reed, J. Chem. Phys. 84, 2998 (1986).en_US
dc.identifier.citedreferenceE. L. Bominaar, X.-Q. Ding, A. Gismelseed, E. Bill, H. Winkler, A. X. Trautwein, H. Nasri, J. Fischer, and R. Weiss, Inorg. Chem. 31, 1845 (1992).en_US
dc.identifier.citedreferenceIn ferric porphyrins, the low-temperature electron-spin relaxation mechanism contains a strong Orbach contribution, from which the mS = ±1/2 to mS = ±3/2mS=±1∕2tomS=±3∕2 doublet splitting has been inferred;C. P. Scholes, R. A. Isaacson, and G. Feher, Biochim. Biophys. Acta 244, 206 (1971);Y. Zhou, B. E. Bowler, G. R. Eaton, and S. Eaton, J. Magn. Reson. 144, 115 (2000).en_US
dc.identifier.citedreferenceK. Clark, L. B. Dugad, R. G. Bartsch, M. A. Cusanovich, and G. N. La Mar, J. Am. Chem. Soc. 118, 4654 (1996);A. Asokan, J. S. de Ropp, S. L. Newmyeer, P. R. Ortiz de Montellano, and G. N. La Mar, 123, 4243 (2001);P. Tsan, M. Caffrey, M. L. Daku, M. Cusanovich, S. Marion, and P. Gans, 123, 2231 (2001).en_US
dc.identifier.citedreferenceJ. Silver and B. Lukas, Inorg. Chim. Acta 92, 259 (1984).en_US
dc.identifier.citedreferenceC. Maricondi, D. K. Straub, and L. M. Epstein, J. Am. Chem. Soc. 94, 4157 (1972).en_US
dc.identifier.citedreferenceS. H. Koenig, R. D. Brown, and M. Spiller, Magn. Reson. Med. 4, 252 (1987).en_US
dc.identifier.citedreferenceK. E. Kellar and N. Foster, Inorg. Chem. 32, 1353 (1992).en_US
dc.identifier.citedreferenceG. Hernandez and R. G. Bryant, Bioconjugate Chem. 2, 394 (1991).en_US
dc.identifier.citedreferenceJ. E. Bradshaw, K. A. Gillogly, L. J. Wilson, K. Kumar, X. Wan, M. F. Tweedle, G. Hernandez, and R. G. Bryant, Inorg. Chim. Acta 275–6 106 (1998).en_US
dc.identifier.citedreferenceS. Sur and R. G. Bryant, J. Phys. Chem. 99, 4900 (1995).en_US
dc.identifier.citedreferenceP. Hambright, Chemistry of Water Soluble Porphyrins in The Porphyrin Handbook Vol. 3, edited by K. M. Kadish, K. M. Smith, and R. Guilard (Academic, New York, 2000), Chap. 18.en_US
dc.identifier.citedreferenceA. A. El-Awady, P. C. Wilkins, and R. G. Wilkins, Inorg. Chem. 24, 2053 (1985).en_US
dc.identifier.citedreferenceH. Goff and L. O. Morgan, Inorg. Chem. 15, 3180 (1976).en_US
dc.identifier.citedreferenceA. A. El-Awady, P. C. Wilkins, and R. G. Wilkins, Inorg. Chem. 24, 2053 (1985).en_US
dc.identifier.citedreferenceJ. C. Miller, S. M. Abernathy, L. L. Lohr, and R. R. Sharp, J. Phys. Chem. A 104, 9481 (2000).en_US
dc.identifier.citedreferenceJ. C. Miller, L. L. Lohr, and R. R. Sharp, J. Magn. Reson. 148, 267 (2001).en_US
dc.identifier.citedreferenceE. Strandberg and P.-O. Westlund, J. Magn. Reson. 137, 333 (1999).en_US
dc.identifier.citedreferenceD. Kruk and J. Kowalewski, JBIC, J. Biol. Inorg. Chem. 8, 512 (2003).en_US
dc.identifier.citedreferenceS. Aime, P. L. Anelli, M. Botta, M. Brocchetta, S. Canton, F. Fedeli, E. Gianoio, and E. Terreno, JBIC, J. Biol. Inorg. Chem. 7, 58 (2002).en_US
dc.identifier.citedreferenceX. Zhou, P. Caravan, R. B. Clarkson, and P.-O. Westlund, J. Magn. Reson. 167, 147 (2004).en_US
dc.identifier.citedreferenceJ. Krzystek and J. Telser, J. Magn. Reson. 162, 454 (2003).en_US
dc.identifier.citedreferenceI. J. Ostrich, G. Liu, H. W. Dodgen, and J. P. Hunt, Inorg. Chem. 19, 619 (1980).en_US
dc.identifier.citedreferenceT. Schneppensieper, A. Zahl, and R. v. Eldic, Angew. Chem., Int. Ed. 40, 1678 (2001).en_US
dc.identifier.citedreferenceK. Asakura, M. Nomura, and H. Kuroda, Bull. Chem. Soc. Jpn. 58, 1542 (1985).en_US
dc.identifier.citedreferenceM. Magini and R. Caminiti, J. Inorg. Nucl. Chem. 39, 91 (1977).en_US
dc.identifier.citedreferenceM. Magini, J. Chem. Phys. 70, 317 (1979).en_US
dc.identifier.citedreferenceM. Montgomery, R. V. Chastain, and E. C. Lingafelter, Acta Crystallogr. 20, 731 (1966).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.