Show simple item record

Benchmarking the performance of density functional theory based Green’s function formalism utilizing different self-energy models in calculating electronic transmission through molecular systems

dc.contributor.authorProciuk, Alexander H.en_US
dc.contributor.authorVan Kuiken, Benen_US
dc.contributor.authorDunietz, Barry D.en_US
dc.date.accessioned2011-11-15T16:10:29Z
dc.date.available2011-11-15T16:10:29Z
dc.date.issued2006-11-28en_US
dc.identifier.citationProciuk, Alexander; Van Kuiken, Ben; Dunietz, Barry D. (2006). "Benchmarking the performance of density functional theory based Green’s function formalism utilizing different self-energy models in calculating electronic transmission through molecular systems." The Journal of Chemical Physics 125(20): 204717-204717-7. <http://hdl.handle.net/2027.42/87873>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87873
dc.description.abstractElectronic transmission through a metal-molecule-metal system is calculated by employing a Green’s function formalism in the scattering based scheme. Self-energy models representing the bulk and the potential bias are used to describe electron transport through the molecular system. Different self-energies can be defined by varying the partition between device and bulk regions of the metal-molecule-metal model system. In addition, the self-energies are calculated with different representations of the bulk through its Green’s function. In this work, the dependence of the calculated transmission on varying the self-energy subspaces is benchmarked. The calculated transmission is monitored with respect to the different choices defining the self-energy model. In this report, we focus on one-dimensional model systems with electronic structures calculated at the density functional level of theory.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleBenchmarking the performance of density functional theory based Green’s function formalism utilizing different self-energy models in calculating electronic transmission through molecular systemsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.identifier.pmid17144733en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87873/2/204717_1.pdf
dc.identifier.doi10.1063/1.2397676en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceC. M. Fischer, M. Burghard, and S. Roth, Synth. Met. 71, 1975 (1995).en_US
dc.identifier.citedreferenceM. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science 278, 252 (1997).en_US
dc.identifier.citedreferenceJ. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science 286, 1550 (1999).en_US
dc.identifier.citedreferenceC. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S. Williams, and J. R. Heath, Science 285, 391 (1999).en_US
dc.identifier.citedreferenceC. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart, and J. R. Heath, Science 289, 1172 (2000).en_US
dc.identifier.citedreferenceT. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, and C. M. Lieber, Science 289, 94 (2000).en_US
dc.identifier.citedreferenceC. Joachim, J. K. Gimzewski, and A. Aviram, Nature (London) 408, 541 (2000).en_US
dc.identifier.citedreferenceA. Nitzan, Annu. Rev. Phys. Chem. 52, 681 (2001).en_US
dc.identifier.citedreferenceJ. M. Tour, A. M. Rawlett, M. Kozaki et al., Chem.-Eur. J. 7, 5118 (2001).en_US
dc.identifier.citedreferenceF. R. F. Fan, J. P. Yang, L. T. Cai, D. W. Price, S. M. Dirk, D. V. Kosynkin, Y. X. Yao, A. M. Rawlett, J. M. Tour, and A. J. Bard, J. Am. Chem. Soc. 124, 5550 (2002).en_US
dc.identifier.citedreferenceJ. Park, A. N. Pasupathy, J. I. Goldsmith et al., Nature (London) 417, 722 (2002).en_US
dc.identifier.citedreferenceW. J. Liang, M. Shores, M. P. Bockrath, J. R. Long, and H. Park, Nature (London) 417, 725 (2002).en_US
dc.identifier.citedreferenceY. Luo, C. P. Collier, J. O. Jeppesen et al., ChemPhysChem 3, 519 (2002).en_US
dc.identifier.citedreferenceD. M. Adams, L. Brus, C. E. D. Chidsey et al., J. Phys. Chem. B 107, 6668 (2003).en_US
dc.identifier.citedreferenceR. M. Metzger, Chem. Rev. (Washington, D.C.) 103, 3803 (2003).en_US
dc.identifier.citedreferenceA. Nitzan and M. A. Ratner, Science 300, 1384 (2003).en_US
dc.identifier.citedreferenceR. L. McCreery, Chem. Mater. 16, 4477 (2004).en_US
dc.identifier.citedreferenceW. Tian, S. Datta, S. Hong, R. Reifenberger, J. I. Henderson, and C. P. Kubiak, J. Chem. Phys. 109, 2874 (1998).en_US
dc.identifier.citedreferenceR. Landauer, Philos. Mag. 21, 863 (1970).en_US
dc.identifier.citedreferenceP. F. Bagwell and T. P. Orlando, Phys. Rev. B 40, 1456 (1989).en_US
dc.identifier.citedreferenceI. Imry and R. Landauer, Rev. Mod. Phys. 71, S306 (1999).en_US
dc.identifier.citedreferenceM. P. Samanta, W. Tian, S. Datta, J. I. Henderson, and C. P. Kubiak, Phys. Rev. B 53, R7626 (1996).en_US
dc.identifier.citedreferenceS. N. Yaliraki, A. E. Roitberg, C. Gonzalez, V. Mujica, and M. A. Ratner, J. Chem. Phys. 111, 6997 (1999).en_US
dc.identifier.citedreferenceM. Di Ventra, S. T. Pantelides, and N. D. Lang, Phys. Rev. Lett. 84, 979 (2000).en_US
dc.identifier.citedreferenceY. Xue, S. Datta, and M. A. Ratner, Chem. Phys. 281, 151 (2002).en_US
dc.identifier.citedreferenceK. Stokbro, J. Taylor, M. Brandbyge, J. L. Mozos, and P. Ordejn, Comput. Mater. Sci. 27, 151 (2002).en_US
dc.identifier.citedreferenceN. D. Lang and P. Avouris, Phys. Rev. Lett. 84, 358 (2000).en_US
dc.identifier.citedreferenceY. Xue, S. Datta, and M. A. Ratner, J. Chem. Phys. 115, 4292 (2001).en_US
dc.identifier.citedreferenceN. D. Lang and P. Avouris, Nano Lett. 3, 737 (2003).en_US
dc.identifier.citedreferenceP. S. Damle, A. W. Ghosh, and S. Datta, Phys. Rev. B 64, 201403 (2001).en_US
dc.identifier.citedreferenceJ. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 (2001).en_US
dc.identifier.citedreferenceP. Damle, A. W. Ghosh, F. Zahid, and S. Datta, Chem. Phys. 171–187, 225 (2002).en_US
dc.identifier.citedreferenceY. Xue and M. A. Ratner, Phys. Rev. B 68, 115406 (2003).en_US
dc.identifier.citedreferenceM. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).en_US
dc.identifier.citedreferenceM. Galperin and A. Nitzan, Ann. N.Y. Acad. Sci. 1006, 48 (2003).en_US
dc.identifier.citedreferenceK. Hirose and M. Tsukada, Phys. Rev. B 51, 5278 (1995).en_US
dc.identifier.citedreferenceN. Lang, Phys. Rev. B 52, 5335 (1995).en_US
dc.identifier.citedreferenceS. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, New York, 1995).en_US
dc.identifier.citedreferenceS. H. Ke, H. U. Baranger, and W. Yang, Phys. Rev. B 70, 085410 (2004).en_US
dc.identifier.citedreferenceG. C. Solomon, J. R. Reimers, and N. S. Hush, J. Chem. Phys. 122, 224502 (2005).en_US
dc.identifier.citedreferenceB. Larade, J. Taylor, H. Mehrez, and H. Guo, Phys. Rev. B 64, 075420 (2001).en_US
dc.identifier.citedreferenceP. Derosa and J. M. Seminario, J. Phys. Chem. B 105, 471 (2001).en_US
dc.identifier.citedreferenceM. P. Lopez Sancho, J. M. L. Lopez Sancho, and J. Rubio, J. Phys. F: Met. Phys. 15, 851 (1985).en_US
dc.identifier.citedreferenceM. B. Nardelli, Phys. Rev. B 60, 7828 (1999).en_US
dc.identifier.citedreferenceT. Seideman and W. H. Miller, J. Chem. Phys. 97, 2499 (1992).en_US
dc.identifier.citedreferenceO. Hod, R. Baer, and E. Rabani, J. Am. Chem. Soc. 127, 1648 (2005).en_US
dc.identifier.citedreferenceO. Hod, E. Rabani, and R. Baer, Acc. Chem. Res. 39, 109 (2006).en_US
dc.identifier.citedreferenceO. Hod, R. Baer, and E. Rabani, J. Phys. Chem. B 108, 14807 (2004).en_US
dc.identifier.citedreferenceO. Hod, E. Rabani, and R. Baer, J. Chem. Phys. 123, 051103 (2005).en_US
dc.identifier.citedreferenceB. Xu and N. Tao, Science 301, 1221 (2003).en_US
dc.identifier.citedreferenceX. Xiao, B. Q. Xu, and N. Tao, Nano Lett. 4, 267 (2004).en_US
dc.identifier.citedreferenceG. Yanson, A. I. Rubio Rollinger, H. E. van der Brom, N. Agrait, and J. M. van Ruitenbeek, Nature (London) 395, 783 (1998).en_US
dc.identifier.citedreferenceH. Ohnishi, Y. Kondo, and Takayanagi, Nature (London) 395, 780 (1998).en_US
dc.identifier.citedreferenceA. D. Becke, J. Chem. Phys. 98, 1372 (1993).en_US
dc.identifier.citedreferenceA. D. Becke, J. Chem. Phys. 98, 5648 (1993).en_US
dc.identifier.citedreferenceW. R. Wadt and J. P. Hay, J. Chem. Phys. 82, 299 (1985).en_US
dc.identifier.citedreferenceY. Shao, L. Fusti-Molnar, Y. Jung et al., Phys. Chem. Chem. Phys. 8, 3172 (2006).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.