Show simple item record

A nonperturbative calculation of nonlinear spectroscopic signals in liquid solution

dc.contributor.authorKa, Being J.en_US
dc.contributor.authorGeva, Eitanen_US
dc.date.accessioned2011-11-15T16:10:31Z
dc.date.available2011-11-15T16:10:31Z
dc.date.issued2006-12-07en_US
dc.identifier.citationKa, Being J.; Geva, Eitan (2006). "A nonperturbative calculation of nonlinear spectroscopic signals in liquid solution." The Journal of Chemical Physics 125(21): 214501-214501-14. <http://hdl.handle.net/2027.42/87874>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87874
dc.description.abstractNonlinear spectroscopic signals in liquid solution were calculated without treating the field-matter interaction in a perturbative manner. The calculation is based on the assumption that the intermolecular degrees of freedom can be treated classically, while the time evolution of the electronic state is treated quantum mechanically. The calculated overall electronic polarization is then resolved into its directional components via the method of Seidner et al. [J. Chem. Phys. 103, 3998 (1995)]. It is shown that the time dependence of the directional components is independent of laser intensity in the impulsive pulse regime, which allows for flexibility in choosing the procedure for calculating optical response functions. The utility and robustness of the nonperturbative procedure is demonstrated in the case of a two-state chromophore solvated in a monoatomic liquid, by calculating nonlinear time-domain signals in the strong-field, weak-field, impulsive, and nonimpulsive regimes.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleA nonperturbative calculation of nonlinear spectroscopic signals in liquid solutionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, 930 North University, Ann Arbor, Michigan 48109-1055en_US
dc.identifier.pmid17166027en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87874/2/214501_1.pdf
dc.identifier.doi10.1063/1.2359440en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceS. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, New York, 1995).en_US
dc.identifier.citedreferenceG. R. Fleming and M. Cho, Annu. Rev. Phys. Chem. 47, 109 (1996).en_US
dc.identifier.citedreferenceW. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Annu. Rev. Phys. Chem. 49, 99 (1998).en_US
dc.identifier.citedreferenceA. B. Myers, Annu. Rev. Phys. Chem. 49, 267 (1998).en_US
dc.identifier.citedreferenceR. M. Stratt and M. Maroncelli, J. Phys. Chem. 100, 12981 (1996).en_US
dc.identifier.citedreferenceP. Vöhringer, D. C. Arnett, T.-S. Yang, and N. F. Scherer, Chem. Phys. Lett. 237, 387 (1995).en_US
dc.identifier.citedreferenceW. Domcke and G. Stock, Adv. Chem. Phys. 100, 1 (1997).en_US
dc.identifier.citedreferenceD. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003).en_US
dc.identifier.citedreferenceM. Cho, S. J. Rosenthal, N. F. Scherer, L. D. Ziegler, and G. R. Fleming, J. Chem. Phys. 96, 5618 (1992).en_US
dc.identifier.citedreferenceS. Mukamel, J. Chem. Phys. 77, 173 (1982).en_US
dc.identifier.citedreferenceN. E. Shemetulskis and R. F. Loring, J. Chem. Phys. 97, 1217 (1992).en_US
dc.identifier.citedreferenceB. D. Bursulaya and H. J. Kim, J. Phys. Chem. 100, 16451 (1996).en_US
dc.identifier.citedreferenceL. E. Fried, N. B. Bernstein, and S. Mukamel, Phys. Rev. Lett. 68, 1842 (1992).en_US
dc.identifier.citedreferenceJ. G. Saven and J. L. Skinner, J. Chem. Phys. 99, 4391 (1993).en_US
dc.identifier.citedreferenceM. D. Stephens, J. G. Saven, and J. L. Skinner, J. Chem. Phys. 106, 2129 (1997).en_US
dc.identifier.citedreferenceS. A. Egorov, E. Rabani, and B. J. Berne, J. Chem. Phys. 108, 1407 (1998).en_US
dc.identifier.citedreferenceK. F. Everitt, E. Geva, and J. L. Skinner, J. Chem. Phys. 114, 1326 (2001).en_US
dc.identifier.citedreferenceK. F. Everitt and J. L. Skinner, Chem. Phys. 266, 197 (2001).en_US
dc.identifier.citedreferenceJ. L. Skinner, J. Chem. Phys. 77, 3398 (1982).en_US
dc.identifier.citedreferenceA. M. Walsh and R. F. Loring, Chem. Phys. Lett. 186, 77 (1991).en_US
dc.identifier.citedreferenceO. Kühn and N. Makri, J. Phys. Chem. A 103, 9487 (1999).en_US
dc.identifier.citedreferenceM. Ovchinnikov, V. A. Apkarian, and G. A. Voth, J. Chem. Phys. 184, 7130 (2001).en_US
dc.identifier.citedreferenceQ. Shi and E. Geva, J. Chem. Phys. 122, 064506 (2005).en_US
dc.identifier.citedreferenceA. D. Hammerich, R. Kosloff, and M. A. Ratner, J. Chem. Phys. 97, 6410 (1992).en_US
dc.identifier.citedreferenceU. Banin, A. Bartana, S. Ruhman, and R. Kosloff, J. Chem. Phys. 101, 8461 (1994).en_US
dc.identifier.citedreferenceG. Ashkenazi, U. Banin, A. Bartana, R. Kosloff, and S. Ruhman, Adv. Chem. Phys. 100, 229 (1997).en_US
dc.identifier.citedreferenceM. Sugawara1 and Y. Fujimura, Chem. Phys. 175, 323 (1993).en_US
dc.identifier.citedreferenceG. Stock and W. Domcke, Phys. Rev. A 45, 3032 (1992).en_US
dc.identifier.citedreferenceL. Seidner, G. Stock, and W. Domcke, J. Chem. Phys. 103, 3998 (1995).en_US
dc.identifier.citedreferenceB. Wolfseder, L. Seidner, G. Stock, and W. Domcke, Chem. Phys. 217, 275 (1997).en_US
dc.identifier.citedreferenceM. F. Gelin, A. V. Pisliakov, D. Egorova, and W. Domcke, J. Chem. Phys. 118, 5287 (2003).en_US
dc.identifier.citedreferenceM. F. Gelin, D. Egorova, and W. Domcke, J. Chem. Phys. 23, 164112 (2005).en_US
dc.identifier.citedreferenceJ. Faeder, I. Pinkas, G. Knopp, Y. Prior, and D. J. Tannor, J. Chem. Phys. 115, 8440 (2001).en_US
dc.identifier.citedreferenceC. P. Koch, T. Klüner, and R. Kosloff, J. Chem. Phys. 116, 7983 (2002).en_US
dc.identifier.citedreferenceD. Gelman, G. Katz, R. Kosloff, and M. A. Ratner, J. Chem. Phys. 123, 134112 (2005).en_US
dc.identifier.citedreferenceT. I. C. Jansen, J. G. Snijders, and K. Duppen, J. Chem. Phys. 113, 307 (2000).en_US
dc.identifier.citedreferenceT. I. C. Jansen, J. G. Snijders, and K. Duppen, J. Chem. Phys. 114, 10910 (2001).en_US
dc.identifier.citedreferenceT. Mančal, A. V. Pisliakov, and G. R. Fleming, J. Chem. Phys. 124, 234504 (2006).en_US
dc.identifier.citedreferenceA. V. Pisliakov, T. Mančal, and G. R. Fleming, J. Chem. Phys. 124, 234505 (2006).en_US
dc.identifier.citedreferenceM. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).en_US
dc.identifier.citedreferenceF. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Phys. Rev. Lett. 67, 516 (1991).en_US
dc.identifier.citedreferenceR. Bavli and H. Metiu, Phys. Rev. Lett. 69, 1986 (1992).en_US
dc.identifier.citedreferenceD. G. Evans, R. D. Coalson, H. J. Kim, and Y. Dakhnovskii, Phys. Rev. Lett. 75, 3649 (1995).en_US
dc.identifier.citedreferenceA. Bartana, R. Kosloff, and D. J. Tannor, J. Chem. Phys. 99, 196 (1993).en_US
dc.identifier.citedreferenceA. Bartana, R. Kosloff, and D. J. Tannor, J. Chem. Phys. 106, 1435 (1997).en_US
dc.identifier.citedreferenceD. E. Makarov and N. Makri, Phys. Rev. B 52, R2257 (1995).en_US
dc.identifier.citedreferenceN. Makri, J. Chem. Phys. 106, 2286 (1997).en_US
dc.identifier.citedreferenceN. Makri and L. Wei, Phys. Rev. E 55, 2475 (1997).en_US
dc.identifier.citedreferenceR. I. Cukier, C. Denk, and M. Morillo, Chem. Phys. 217, 179 (1997).en_US
dc.identifier.citedreferenceM. Grifoni and P. Hänggi, Phys. Rep. 304, 229 (1998).en_US
dc.identifier.citedreferenceO. Kühn, Eur. Phys. J. D 6, 49 (1999).en_US
dc.identifier.citedreferenceH. Naundorf, K. Sundermann, and O. Kühn, Chem. Phys. 240, 163 (1999).en_US
dc.identifier.citedreferenceO. Kuhn, Y. Zhao, F. Shuang, and Y. Yan, J. Chem. Phys. 112, 6104 (2000).en_US
dc.identifier.citedreferenceN. Dŏslić, O. Kühn, J. Manz, and K. Sundermann, J. Phys. Chem. A 102, 9645 (1998).en_US
dc.identifier.citedreferenceN. Dŏslić, K. Sunderman, L. González, O. Mó, J. Giraud-Girard, and O. Kühn, Phys. Chem. Chem. Phys. 1, 1249 (1999).en_US
dc.identifier.citedreferenceT. C. Weinacht, J. L. White, and P. H. Bucksbaum, J. Phys. Chem. A 103, 10166 (1999).en_US
dc.identifier.citedreferenceE. Geva, J. Chem. Phys. 116, 1629 (2001).en_US
dc.identifier.citedreferenceM. Demirplak and S. A. Rice, J. Chem. Phys. 116, 8028 (2002).en_US
dc.identifier.citedreferenceY. Ohtsuki, K. Nakagami, W. Zhu, and H. Rabitz, Chem. Phys. 287, 197 (2003).en_US
dc.identifier.citedreferenceQ. Shi and E. Geva, J. Chem. Phys. 119, 11773 (2003).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.