Show simple item record

Controlling the motion of interacting particles: Homogeneous systems and binary mixtures

dc.contributor.authorSavel’ev, Sergeyen_US
dc.contributor.authorNori, Francoen_US
dc.date.accessioned2011-11-15T16:10:51Z
dc.date.available2011-11-15T16:10:51Z
dc.date.issued2005-06en_US
dc.identifier.citationSavel’ev, Sergey; Nori, Franco (2005). "Controlling the motion of interacting particles: Homogeneous systems and binary mixtures." Chaos 15(2): 026112-026112-16. <http://hdl.handle.net/2027.42/87889>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87889
dc.description.abstractWe elaborate on recent results on the transport of interacting particles for both single-species and binary mixtures subject to an external driving on a ratchetlike asymmetric substrate. Moreover, we also briefly review motion control without any spatial asymmetric potential (i.e., no ratchet). Our results are obtained using an analytical approach based on a nonlinear Fokker–Planck equation as well as via numerical simulations. By increasing the particle density, the net dc ratchet current in our alternating (ac)-driven systems can either increase or decrease depending on the temperature, the drive amplitude, and the nature of the inter-particle interactions. This provides an effective control of particle motion by just changing the particle density. At low temperatures, attracting particles can condense at some potential minima, thus breaking the discrete translational symmetry of the substrate. Depending on the drive amplitude, an agglomeration or condensation results either in a drop to zero or in a saturation of the net particle velocity at densities above the condensation density—the latter case producing a very efficient rectification mechanism. For binary mixtures we find three ways of controlling the particle motion of one (passive) BB species by means of another (active) AA species: (i) Dragging the target particles BB by driving the auxiliary particles AA, (ii) rectifying the motion of the BB particles on the asymmetric potential created by the A–BA–B interactions, and (iii) dynamically modifying (pulsating) this potential by controlling the motion of the AA particles. This allows to easily control the magnitude and direction of the velocity of the target particles by changing either the frequency, phase and/or amplitude of the applied ac drive(s).en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleControlling the motion of interacting particles: Homogeneous systems and binary mixturesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumFrontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-0198, Japan and Center for Theoretical Physics, Department of Physics, Center for the Study of Complex Systems, The University of Michigan, Ann Arbor, Michigan 48109-1120en_US
dc.contributor.affiliationotherFrontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-0198, Japanen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87889/2/026112_1.pdf
dc.identifier.doi10.1063/1.1903183en_US
dc.identifier.sourceChaosen_US
dc.identifier.citedreferenceSee, e.g., the reviews: P. Reimann, Phys. Rep. 361, 57 (2002);R. D. Astumian and P. Hänggi, Phys. Today 55, 33 (2002);F. Jülicher, A. Ajdari, and J. Prost, Rev. Mod. Phys. 69, 1269 (1997);R. D. Astumian, Science 276, 917 (1997);J. M. R. Parrondo and B. J. De Cisneros, Appl. Phys. A: Mater. Sci. Process. 75, 179 (2002);P. Hänggi, F. Marchesoni, and F. Nori, Ann. Phys. 14, 51 (2005).en_US
dc.identifier.citedreferenceP. Reimann, R. Bartussek, R. Haussler, and P. Hänggi, Phys. Lett. A 215, 26 (1996).en_US
dc.identifier.citedreferenceR. Bartussek, P. Hänggi, and J. P. Kissner, Europhys. Lett. 28, 459 (1994);M. O. Magnasco, Phys. Rev. Lett. 71, 1477 (1993).en_US
dc.identifier.citedreferenceA. L. R. Bug and B. J. Berne, Phys. Rev. Lett. 59, 948 (1987);J. Prost, J. F. Chauwin, L. Peliti, and A. Ajdari, Phys. Rev. Lett. 72, 2652 (1994).en_US
dc.identifier.citedreferenceD. A. Doyle, J. M. Cabral, R. A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait, and R. MacKinnon, Science 280, 69 (1998).en_US
dc.identifier.citedreferenceK. Kitamura, M. Tokunaga, A. H. Iwane, and T. Yanagida, Nature (London) 397, 129 (1999).en_US
dc.identifier.citedreferenceFor reviews see: H. Linke, Appl. Phys. A: Mater. Sci. Process. 75, 167 (2002);special issue on Ratchets and Brownian Motors: Basics, Experiments and Applications;P. Hänggi, M. Ratner, and S. Yaliraki, Chem. Phys. 281, 111 (2002);issue on Transport in Molecular Wires.en_US
dc.identifier.citedreferenceJ. Rousselet, L. Salome, A. Ajdari, and J. Prost, Nature (London) 370, 446 (1994).en_US
dc.identifier.citedreferenceI. Derényi, C. Lee, and A. L. Barabási, Phys. Rev. Lett. 80, 1473 (1998).en_US
dc.identifier.citedreferenceJ. F. Wambaugh, C. Reichhardt, C. J. Olson, F. Marchesoni, and Franco Nori, Phys. Rev. Lett. 83, 5106 (1999);C.-S. Lee, B. Jankó, I. Derényi, and A.-L. Barabási, Nature (London) 400, 337 (1999);C. J. Olson, C. Reichhardt, B. Jankó, and F. Nori, Phys. Rev. Lett. 87, 177002 (2001);F. Marchesoni, B. Y. Zhu, and F. Nori, Physica A 325, 78 (2003);B. Y. Zhu, F. Marchesoni, and F. Nori, Physica E (Amsterdam) 18, 318 (2003);18, 322 (2003);Phys. Rev. Lett. 92, 180602 (2004);B. Y. Zhu, F. Marchesoni, V. V. Moshchalkov, and F. Nori, Phys. Rev. B 68, 014514 (2003);Physica C 388, 665 (2003);404, 260 (2004).en_US
dc.identifier.citedreferenceS. Savel’ev and F. Nori, Nat. Mater. 1, 179 (2002).en_US
dc.identifier.citedreferenceJ. E. Villegas, S. Savel’ev, F. Nori, E. M. Gonzalez, J. V. Anguita, R. García, and J. L. Vicent, Science 302, 1188 (2003).en_US
dc.identifier.citedreferenceD. Cole, A. Crisan, S. J. Bending, T. Tamegai, K. van der Beek, and M. Konczykowski, Physica C 404, 99 (2004).en_US
dc.identifier.citedreferenceS. Bending et al., (unpublished).en_US
dc.identifier.citedreferenceY. Togawa et al., (unpublished)J. Van de Vondelet al.., Phys. Rev. Lett.94, 057003 (2005).en_US
dc.identifier.citedreferenceS. Matthias and F. Muller, Nature (London) 424, 53 (2003);C. Kettner, P. Reimann, P. Hänggi, and F. Müller, Phys. Rev. E 61, 312 (2000).en_US
dc.identifier.citedreferenceZ. Siwy and A. Fuliński, Phys. Rev. Lett. 89, 198103 (2002);C. Marquet, A. Buguin, L. Talini, and P. Silberzan, Phys. Rev. Lett. 88, 168301 (2002).en_US
dc.identifier.citedreferenceP. T. Korda, M. B. Taylor, and D. G. Grier, Phys. Rev. Lett. 89, 128301 (2002);B. A. Koss and D. G. Grier, Appl. Phys. Lett. 82, 3985 (2003).en_US
dc.identifier.citedreferenceD. G. Grier, Nature (London) 424, 810 (2003).en_US
dc.identifier.citedreferenceA. Gopinathan and D. G. Grier, Phys. Rev. Lett. 92, 130602 (2004).en_US
dc.identifier.citedreferenceK. Ladavac and D. G. Grier, Opt. Express 12, 1144 (2004).en_US
dc.identifier.citedreferenceS. Lee, K. Ladavac, M. Polin, and D. G. Grier, Phys. Rev. Lett.94, 110601 (2005).en_US
dc.identifier.citedreferenceF. Marchesoni, Phys. Rev. Lett. 77, 2364 (1996).en_US
dc.identifier.citedreferenceI. Derényi and T. Vicsek, Phys. Rev. Lett. 75, 374 (1995).en_US
dc.identifier.citedreferenceJ. Buceta, J. M. Parrondo, C. Van den Broeck, and F. J. de la Rubia, Phys. Rev. E 61, 6287 (2000).en_US
dc.identifier.citedreferenceC. Van den Broeck, I. Bena, P. Reimann, and J. Lehmann, Ann. Phys. 9, 713 (2000).en_US
dc.identifier.citedreferenceP. Reimann, R. Kawai, C. Van den Broeck, and P. Hänggi, Europhys. Lett. 45, 545 (1999).en_US
dc.identifier.citedreferenceR. Eichhorn, P. Reimann, and P. Hänggi, Phys. Rev. Lett. 88, 190601 (2002).en_US
dc.identifier.citedreferenceC. Van den Broeck, J. M. R. Parrondo, and R. Toral, Phys. Rev. Lett. 73, 3395 (1994).en_US
dc.identifier.citedreferenceS. I. Denisov, E. S. Denisova, and P. Hänggi, Phys. Rev. E 71, 016104 (2005).en_US
dc.identifier.citedreferenceS. Savel’ev, F. Marchesoni, and F. Nori, Phys. Rev. E 70, 061107 (2004).en_US
dc.identifier.citedreferenceS. Savel’ev, F. Marchesoni, and F. Nori, Phys. Rev. E 71, 011107 (2005).en_US
dc.identifier.citedreferenceJ. H. Morais-Cabral, Y. Zhou, and R. MacKinnon, Nature (London) 414, 37 (2001).en_US
dc.identifier.citedreferenceS. Savel’ev, F. Marchesoni, and F. Nori, Phys. Rev. Lett. 91, 010601 (2003).en_US
dc.identifier.citedreferenceS. Savel’ev, F. Marchesoni, and F. Nori, Phys. Rev. Lett. 92, 160602 (2004).en_US
dc.identifier.citedreferenceF. Marchesoni, Phys. Lett. A 119, 221 (1986).en_US
dc.identifier.citedreferenceS. Savel’ev and F. Nori, Phys. Rev. B 70, 214415 (2004).en_US
dc.identifier.citedreferenceS. Savel’ev, F. Marchesoni, P. Hänggi, and F. Nori, Europhys. Lett. 67, 179 (2004);Eur. Phys. J. B 40, 403 (2004);Phys. Rev. E 70, 066109 (2004).en_US
dc.identifier.citedreferenceA. Tonomura, H. Kasai, O. Kamimura, T. Matsuda, K. Harada, T. Yoshida, T. Akashi, J. Shimoyama, K. Kishio, T. Hanaguri, K. Kitazawa, T. Masui, S. Tajima, N. Koshizuka, P. L. Gammel, D. Bishop, M. Sasase, and S. Okayasu, Phys. Rev. Lett. 88, 237001 (2002);A. Grigorenko, S. Bending, T. Tamegai, S. Ooi, and M. Henini, Nature (London) 414, 728–731 (2001).en_US
dc.identifier.citedreferenceM. Borromeo and F. Marchesoni, Chaos (to be published).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.