Show simple item record

Gradient‐enhanced TROSY described with Cartesian product operators

dc.contributor.authorZuiderweg, Erik R. P.en_US
dc.contributor.authorRousaki, Aikaterinien_US
dc.date.accessioned2011-12-05T18:32:21Z
dc.date.available2013-01-02T16:32:42Zen_US
dc.date.issued2011-11en_US
dc.identifier.citationZuiderweg, Erik R.P.; Rousaki, Aikaterini (2011). "Gradient‐enhanced TROSY described with Cartesian product operators." Concepts in Magnetic Resonance Part A 38A(6): 280-288. <http://hdl.handle.net/2027.42/88024>en_US
dc.identifier.issn1546-6086en_US
dc.identifier.issn1552-5023en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/88024
dc.description.abstractTROSY, Transverse Relaxation Optimized Spectroscopy, was developed more than a decade ago. Since that time, the 15 N‐ 1 H HSQC‐TROSY experiment has become the standard “fingerprint” correlation spectrum for proteins of high molecular weight. In addition, its implementation in protein triple resonance experiments has pushed the boundaries of NMR assignment up to about 100 kDa, making NMR a highly relevant technique in structural biology. TROSY exploits the dipole‐CSA cross‐correlated relaxation properties of the NH system and selects for the narrowest of the HSQC J‐correlation quartet in both dimensions. The original publications and reviews of TROSY use shift operators and/or single transition product operators to describe the TROSY coherence pathways selections. In this review, we offer a familiar Cartesian product operator approach to comprehensively describe all of the events in the modern TROSY pulse sequence such as multiplet selection, gradient coherence selection, gradient quadrature, and sensitivity enhancement. © 2011 Wiley Periodicals, Inc. Concepts Magn Reson Part A 38: 280–288, 2011.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherProteinen_US
dc.subject.otherNMRen_US
dc.subject.otherCross‐Correlated Relaxationen_US
dc.titleGradient‐enhanced TROSY described with Cartesian product operatorsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelRadiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109en_US
dc.contributor.affiliationumLSA Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, MI 48109en_US
dc.contributor.affiliationumDepartment of Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109en_US
dc.contributor.affiliationotherInstitute of Organic Chemistry and Chemical Biology, Goethe University, Max‐von‐Laue‐Str. 7, Frankfurt, DE 60438en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/88024/1/20228_ftp.pdf
dc.identifier.doi10.1002/cmr.a.20228en_US
dc.identifier.sourceConcepts in Magnetic Resonance Part Aen_US
dc.identifier.citedreferencePervushin K, Riek R, Wider G, Wüthrich K. 1997. Attenuated T2 relaxation by mutual cancellation of dipole‐dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94: 12366 – 12371.en_US
dc.identifier.citedreferencePervushin K, Riek R, Wider G, Wüthrich K. 1998. Transverse Relaxation‐Optimized Spectroscopy (TROSY) for NMR studies of aromatic spin systems in 13 C‐labeled proteins. J Am Chem Soc 120: 6394 – 6400.en_US
dc.identifier.citedreferenceSanders N.C.R., II, Schwonek JP. 1992. Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid‐state NMR. Biochemistry 31: 8898 – 8905.en_US
dc.identifier.citedreferenceSalzmann M, Pervushin K, Wider G, Senn H, Wüthrich K. 1998. TROSY in triple‐resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci USA 95: 13585 – 13590.en_US
dc.identifier.citedreferenceVandeVen FJM, Hilbers CW. 1983. A simple formalism for the description of multiple‐pulse experiments—application to a weakly coupled 2‐spin ( I = 1/2) system. J Magn Reson 54: 512 – 520.en_US
dc.identifier.citedreferenceSørensen OW, Eich GW, Levitt MH, Bodenhausen G, Ernst RR. 1983. Product operator‐formalism for the description of NMR pulse experiments. Prog Nucl Magn Reson Spectrosc 16: 163 – 192.en_US
dc.identifier.citedreferencePalmer AG, III, Cavanagh J, Wright PE, Rance M. 1991. Sensitivity improvement in proton‐detected 2‐dimensional heteronuclear correlation NMR‐spectroscopy. J Magn Reson 93: 151 – 170.en_US
dc.identifier.citedreferenceKay LE, Keifer P, Saarinen T. 1992. Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114: 10663 – 10665.en_US
dc.identifier.citedreferenceGoldman M. 1984. Interference effects in the relaxation of a pair of unlike spin 1/2 nuclei. J Magn Reson 60: 437 – 452.en_US
dc.identifier.citedreferenceWerbelow LG. 1996. Relaxation Processes: Cross Correlation and Interference Terms in Encyclopedia of NMR. New York: John Wiley. p 4072 – 4078.en_US
dc.identifier.citedreferenceFischer MWF, Majumdar A, Zuiderweg ERP. 1998. Protein NMR relaxation: theory, applications and outlook. Prog NMR Spectrosc 33: 207 – 272.en_US
dc.identifier.citedreferenceOtting G, Soler LP, Messerle BA. 1999. Measurement of magnitude and sign of heteronuclear coupling constants in transition metal complexes. J Magn Reson 139: 186 – 186.en_US
dc.identifier.citedreferenceLoth K, Pelupessy P, Bodenhausen G. 2005 Chemical shift anisotropy tensors of carbonyl, nitrogen, and amide proton nuclei in proteins through cross‐correlated relaxation in NMR spectroscopy. J Am Chem Soc 127: 6062 – 6068.en_US
dc.identifier.citedreferenceWerbelow LG, Grant DM. 1977. Determination of motional asymmetry of methyl rotators from 13 C spin dynamics. Adv Magn Reson 9: 189 – 301.en_US
dc.identifier.citedreferenceCzisch M, Boelens R. 1998. Sensitivity enhancement in the TROSY experiment. J Magn Reson 134: 158 – 160.en_US
dc.identifier.citedreferenceLoria JP, Rance M, Palmer AG, III. 1999. Transverse‐relaxation‐optimized (TROSY) gradient‐enhanced triple‐resonance NMR spectroscopy. J Magn Reson 141: 180 – 184.en_US
dc.identifier.citedreferenceSchulte‐Herbruggen T, Sørensen OW. 2000. Clean TROSY: compensation for relaxation‐induced artifacts. J Magn Reson 144: 123 – 128.en_US
dc.identifier.citedreferenceYang DW, Kay LE. 1999. Improved (HN)‐H‐1‐detected triple resonance TROSY‐based experiments. J Biomol NMR 13: 3 – 10.en_US
dc.identifier.citedreferenceOtting G, Soler LP, Messerle BA. 1999. Measurement of magnitude and sign of heteronuclear coupling constants in transition metal complexes. J Magn Reson 137: 413 – 429.en_US
dc.identifier.citedreferenceRance M, Loria JP, Palmer AGR. 1999. Sensitivity improvement of transverse relaxation‐optimized spectroscopy. J Magn Reson 136: 92 – 101.en_US
dc.identifier.citedreferenceMarion D, Ikura M, Tschudin R, Bax A. 1989. Rapid recording of 2D NMR‐spectra without phase cycling—Application to the study of hydrogen‐exchange in proteins. J Magn Reson 85: 393 – 399.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.