Show simple item record

Lack of IL‐7 and IL‐15 signaling affects interferon‐γ production by, more than survival of, small intestinal intraepithelial memory CD8 + T cells

dc.contributor.authorIsakov, Dmitryen_US
dc.contributor.authorDzutsev, Amiranen_US
dc.contributor.authorBerzofsky, Jay A.en_US
dc.contributor.authorBelyakov, Igor M.en_US
dc.date.accessioned2011-12-05T18:33:45Z
dc.date.available2013-02-01T20:26:18Zen_US
dc.date.issued2011-12en_US
dc.identifier.citationIsakov, Dmitry; Dzutsev, Amiran; Berzofsky, Jay A.; Belyakov, Igor M. (2011). "Lack of IL‐7 and IL‐15 signaling affects interferon‐γ production by, more than survival of, small intestinal intraepithelial memory CD8 + T cells." European Journal of Immunology 41(12): 3513-3528. <http://hdl.handle.net/2027.42/88067>en_US
dc.identifier.issn0014-2980en_US
dc.identifier.issn1521-4141en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/88067
dc.description.abstractSurvival of antigen‐specific CD8 + T cells in peripheral lymphoid organs during viral infection is known to be dependent predominantly on IL‐7 and IL‐15. However, little is known about a possible influence of tissue environmental factors on this process. To address this question, we studied survival of memory antigen‐specific CD8 + T cells in the small intestine. Here, we show that 2 months after vaccinia virus infection, B8R 20–27 /H2‐K b tetramer + CD8 + T cells in the small intestinal intraepithelial (SI‐IEL) layer are found in mice deficient in IL‐15 expression. Moreover, SI‐IEL and lamina propria lymphocytes do not express the receptor for IL‐7 (IL‐7Rα/CD127). In addition, after in vitro stimulation with B8R 20–27 peptide, SI‐IEL cells do not produce high amounts of IFN‐γ neither at 5 days nor at 2 months postinfection (p.i.). Importantly, the lack of IL‐15 was found to shape the functional activity of antigen‐specific CD8 + T cells, by narrowing the CTL avidity repertoire. Taken together, these results reveal that survival factors, as well as the functional activity, of antigen‐specific CD8 + T cells in the SI‐IEL compartments may markedly differ from their counterparts in peripheral lymphoid tissues.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.titleLack of IL‐7 and IL‐15 signaling affects interferon‐γ production by, more than survival of, small intestinal intraepithelial memory CD8 + T cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Internal Medicine, University of Michigan, School of Medicine, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Internal Medicine, University of Michigan, School of Medicine, 109 Zina Pitcher Place, BSRB, Room 4039, Ann Arbor, MI 48109, USA Fax: +1‐734‐615‐2506en_US
dc.contributor.affiliationotherMolecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USAen_US
dc.identifier.pmid21928282en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/88067/1/3513_ftp.pdf
dc.identifier.doi10.1002/eji.201141453en_US
dc.identifier.sourceEuropean Journal of Immunologyen_US
dc.identifier.citedreferenceGuadalupe, M., Reay, E., Sankaran, S., Prindiville, T., Flamm, J., McNeil, A. and Dandekar, S., Severe CD4+ T‐cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J. Virol. 2003. 77: 11708 – 11717.en_US
dc.identifier.citedreferenceMehandru, S., Poles, M. A., Tenner‐Racz, K., Horowitz, A., Hurley, A., Hogan, C., Boden, D. et al., Primary HIV‐1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J. Exp. Med. 2004. 200: 761 – 770.en_US
dc.identifier.citedreferenceSui, Y., Zhu, Q., Gagnon, S., Dzutsev, A., Terabe, M., Vaccari, M., Venzon, D. et al., Innate and adaptive immune correlates of vaccine and adjuvant‐induced control of mucosal transmission of SIV in macaques. Proc. Natl. Acad. Sci. USA 2010. 107: 9843 – 9848.en_US
dc.identifier.citedreferenceBelyakov, I. M. and Berzofsky, J. A., Immunobiology of mucosal HIV infection and the basis for development of a new generation of mucosal AIDS vaccines. Immunity 2004. 20: 247 – 253.en_US
dc.identifier.citedreferenceVeazey, R. S., DeMaria, M., Chalifoux, L. V., Shvetz, D. E., Pauley, D. R., Knight, H. L., Rosenzweig, M. et al., Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 1998. 280: 427 – 431.en_US
dc.identifier.citedreferenceBerzofsky, J. A., Ahlers, J., Janik, J., Morris, J., Oh, S., Terabe, M. and Belyakov, I. M., Progress on new vaccine strategies against chronic viral infections. J. Clin. Invest. 2004. 114: 450 – 462.en_US
dc.identifier.citedreferenceBelyakov, I. M., Ahlers, J. D. and Berzofsky, J. A., Mucosal AIDS vaccines: current status and future directions. Expert Rev. Vaccines 2004. 3: 65 – 73.en_US
dc.identifier.citedreferenceBelyakov, I. M. and Ahlers, J. D., What role does the route of immunization play in the generation of protective immunity against mucosal pathogens? J. Immunol. 2009. 183: 6883 – 6892.en_US
dc.identifier.citedreferenceAhlers, J. D. and Belyakov, I. M., Strategies for optimizing targeting and delivery of mucosal HIV vaccines. Eur. J. Immunol. 2009. 39: 2657 – 2669.en_US
dc.identifier.citedreferenceBelyakov, I. M., Ahlers, J. D., Brandwein, B. Y., Earl, P., Kelsall, B. L., Moss, B., Strober, W. and Berzofsky, J. A., The Importance of local mucosal HIV‐specific CD8+ cytotoxic T lymphocytes for resistance to mucosal‐viral transmission in mice and enhancement of resistance by local administration of IL‐12. J. Clin. Invest. 1998. 102: 2072 – 2081.en_US
dc.identifier.citedreferenceBelyakov, I. M., Derby, M. A., Ahlers, J. D., Kelsall, B. L., Earl, P., Moss, B., Strober, W. and Berzofsky, J. A., Mucosal immunization with HIV‐1 peptide vaccine induces mucosal and systemic cytotoxic T lymphocytes and protective immunity in mice against intrarectal recombinant HIV‐vaccinia challenge. Proc. Natl. Acad. Sci. USA 1998. 95: 1709 – 1714.en_US
dc.identifier.citedreferenceBelyakov, I. M., Ahlers, J. D., Clements, J. D., Strober, W. and Berzofsky, J. A., Interplay of cytokines and adjuvants in the regulation of mucosal and systemic HIV‐specific cytotoxic T lymphocytes. J. Immunol. 2000. 165: 6454 – 6462.en_US
dc.identifier.citedreferenceBerzofsky, J. A., Ahlers, J. D. and Belyakov, I. M., Strategies for designing and optimizing new generation vaccines. Nat. Rev. Immunol. 2001. 1: 209 – 219.en_US
dc.identifier.citedreferencePal, R., Venzon, D., Santra, S., Kalyanaraman, V. S., Montefiori, D. C., Hocker, L., Hudacik, L. et al., Systemic immunization with an ALVAC‐HIV‐1/protein boost vaccine strategy protects rhesus macaques from CD4+ T‐cell loss and reduces both systemic and mucosal SHIVKU2 RNA levels. J. Virol. 2006. 80: 3732 – 3742.en_US
dc.identifier.citedreferencePatel, V., Valentin, A., Kulkarni, V., Rosati, M., Bergamaschi, C., Jalah, R., Alicea, C. et al., Long‐lasting humoral and cellular immune responses and mucosal dissemination after intramuscular DNA immunization. Vaccine 2010. 28: 4827 – 4836.en_US
dc.identifier.citedreferenceKaufman, D. R., Bivas‐Benita, M., Simmons, N. L., Miller, D. and Barouch, D. H., Route of adenovirus‐based HIV‐1 vaccine delivery impacts the phenotype and trafficking of vaccine‐elicited CD8+T lymphocytes. J. Virol. 2010. 84: 5986 – 5996.en_US
dc.identifier.citedreferenceBecker, T. C., Wherry, E. J., Boone, D., Murali‐Krishna, K., Antia, R., Ma, A. and Ahmed, R., Interleukin 15 is required for proliferative renewal of virus‐specific memory CD8 T cells. J. Exp. Med. 2002. 195: 1541 – 1548.en_US
dc.identifier.citedreferenceLodolce, J. P., Burkett, P. R., Boone, D. L., Chien, M. and Ma, A., T cell‐independent interleukin 15ralpha signals are required for bystander proliferation. J. Exp. Med. 2001. 194: 1187 – 1194.en_US
dc.identifier.citedreferencePrlic, M., Lefrancois, L. and Jameson, S. C., Multiple choices: regulation of memory CD8 T cell generation and homeostasis by interleukin (IL)‐7 and IL‐15. J. Exp. Med. 2002. 195: F49 – F52.en_US
dc.identifier.citedreferenceGeginat, J., Sallusto, F. and Lanzavecchia, A., Cytokine‐driven proliferation and differentiation of human naive, central memory, and effector memory CD4(+) T cells. J. Exp. Med. 2001. 194: 1711 – 1719.en_US
dc.identifier.citedreferenceBerard, M., Brandt, K., Bulfone‐Paus, S. and Tough, D. F., IL‐15 promotes the survival of naive and memory phenotype CD8+ T cells. J. Immunol. 2003. 170: 5018 – 5026.en_US
dc.identifier.citedreferenceManjunath, N., Shankar, P., Wan, J., Weninger, W., Crowley, M. A., Hieshima, K., Springer, T. A. et al., Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J. Clin. Invest. 2001. 108: 871 – 878.en_US
dc.identifier.citedreferenceJudge, A. D., Zhang, X., Fujii, H., Surh, C. D. and Sprent, J., Interleukin 15 controls both proliferation and survival of a subset of memory‐phenotype CD8(+) T cells. J. Exp. Med. 2002. 196: 935 – 946.en_US
dc.identifier.citedreferenceTan, J. T., Ernst, B., Kieper, W. C., LeRoy, E., Sprent, J. and Surh, C. D., Interleukin (IL)‐15 and IL‐7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 2002. 195: 1523 – 1532.en_US
dc.identifier.citedreferenceSato, N., Patel, H. J., Waldmann, T. A. and Tagaya, Y., The IL‐15/IL‐15Ralpha on cell surfaces enables sustained IL‐15 activity and contributes to the long survival of CD8 memory T cells. Proc. Natl. Acad. Sci. USA 2007. 104: 588 – 593.en_US
dc.identifier.citedreferenceWu, Z., Xue, H. H., Bernard, J., Zeng, R., Issakov, D., Bollenbacher‐Reilley, J., Belyakov, I. M. et al., The IL‐15 receptor alpha chain cytoplasmic domain is critical for normal IL‐15Ralpha function but is not required for trans‐presentation. Blood 2008. 112: 4411 – 4419.en_US
dc.identifier.citedreferenceRoychowdhury, S., May, K. F., Jr., Tzou, K. S., Lin, T., Bhatt, D., Freud, A. G., Guimond, M. et al., Failed adoptive immunotherapy with tumor‐specific T cells: reversal with low‐dose interleukin 15 but not low‐dose interleukin 2. Cancer Res. 2004. 64: 8062 – 8067.en_US
dc.identifier.citedreferenceAhlers, J. D. and Belyakov, I. M., Memories that last forever: strategies for optimizing vaccine T‐cell memory. Blood 2010. 115: 1678 – 1689.en_US
dc.identifier.citedreferenceAhlers, J. D. and Belyakov, I. M., Lessons learned from natural infection: focusing on the design of protective T cell vaccines for HIV/AIDS. Trends Immunol. 2010. 31: 120 – 130.en_US
dc.identifier.citedreferenceAhlers, J. D. and Belyakov, I. M., Strategies for recruiting and targeting dendritic cells for optimizing HIV vaccines. Trends Mol. Med. 2009. 15: 263 – 274.en_US
dc.identifier.citedreferenceWherry, E. J. and Ahmed, R., Memory CD8 T‐cell differentiation during viral infection. J. Virol. 2004. 78: 5535 – 5545.en_US
dc.identifier.citedreferenceSallusto, F., Lenig, D., Forster, R., Lipp, M. and Lanzavecchia, A., Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999. 401: 708 – 712.en_US
dc.identifier.citedreferenceMasopust, D., Vezys, V., Marzo, A. L. and Lefrancois, L., Preferential localization of effector memory cells in nonlymphoid tissue. Science 2001. 291: 2413 – 2417.en_US
dc.identifier.citedreferenceMasopust, D., Vezys, V., Wherry, E. J., Barber, D. L. and Ahmed, R., Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol. 2006. 176: 2079 – 2083.en_US
dc.identifier.citedreferenceSchluns, K. S. and Lefrancois, L., Cytokine control of memory T‐cell development and survival. Nat. Rev. Immunol. 2003. 3: 269 – 279.en_US
dc.identifier.citedreferenceTscharke, D. C., Karupiah, G., Zhou, J., Palmore, T., Irvine, K. R., Haeryfar, S. M., Williams, S. et al., Identification of poxvirus CD8+T cell determinants to enable rational design and characterization of smallpox vaccines. J. Exp. Med. 2005. 201: 95 – 104.en_US
dc.identifier.citedreferenceCrawford, F., Kozono, H., White, J., Marrack, P. and Kappler, J., Detection of antigen‐specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity 1998. 8: 675 – 682.en_US
dc.identifier.citedreferenceNguyen, L. T., Elford, A. R., Murakami, K., Garza, K. M., Schoenberger, S. P., Odermatt, B., Speiser, D. E. and Ohashi, P. S., Tumor growth enhances cross‐presentation leading to limited T cell activation without tolerance. J. Exp. Med. 2002. 195: 423 – 435.en_US
dc.identifier.citedreferenceGoldrath, A. W., Sivakumar, P. V., Glaccum, M., Kennedy, M. K., Bevan, M. J., Benoist, C., Mathis, D. and Butz, E. A., Cytokine requirements for acute and Basal homeostatic proliferation of naive and memory CD8+ T cells. J. Exp. Med. 2002. 195: 1515 – 1522.en_US
dc.identifier.citedreferenceLaouar, A., Haridas, V., Vargas, D., Zhinan, X., Chaplin, D., van Lier, R. A. and Manjunath, N., CD70+ antigen‐presenting cells control the proliferation and differentiation of T cells in the intestinal mucosa. Nat. Immunol. 2005. 6: 698 – 706.en_US
dc.identifier.citedreferenceJiang, W., Ferrero, I., Laurenti, E., Trumpp, A. and MacDonald, H. R., c‐Myc controls the development of CD8alphaalpha TCRalphabeta intestinal intraepithelial lymphocytes from thymic precursors by regulating IL‐15‐dependent survival. Blood 2010. 115: 4431 – 4438.en_US
dc.identifier.citedreferenceLuckschander, N., Pfammatter, N. S., Sidler, D., Jakob, S., Burgener, I. A., Moore, P. F., Zurbriggen, A. et al., Phenotyping, functional characterization, and developmental changes in canine intestinal intraepithelial lymphocytes. Vet. Res. 2009. 40: 58.en_US
dc.identifier.citedreferenceKim, S.‐K., Reed, D. S., Heath, W. R., Carbone, F. and Lefrançois, L., Activation and migration of CD8 T cells in the intestinal mucosa1. J. Immunol. 1997. 159: 4295 – 4306.en_US
dc.identifier.citedreferenceWu, M., van Kaer, L., Itohara, S. and Tonegawa, S., Highly restricted expression of the thymus leukemia antigens on intestinal epithelial cells. J. Exp. Med. 1991. 174: 213 – 218.en_US
dc.identifier.citedreferenceMadakamutil, L. T., Christen, U., Lena, C. J., Wang‐Zhu, Y., Attinger, A., Sundarrajan, M., Ellmeier, W. et al., CD8alphaalpha‐mediated survival and differentiation of CD8 memory T cell precursors. Science 2004. 304: 590 – 593.en_US
dc.identifier.citedreferenceMasopust, D., Choo, D., Vezys, V., Wherry, E. J., Duraiswamy, J., Akondy, R., Wang, J. et al., Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 2010. 207: 553 – 564.en_US
dc.identifier.citedreferenceGebhardt, T., Wakim, L. M., Eidsmo, L., Reading, P. C., Heath, W. R. and Carbone, F. R., Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 2009. 10: 524 – 530.en_US
dc.identifier.citedreferenceBelyakov, I. M. and Ahlers, J. D., Functional CD8(+) CTLs in mucosal sites and HIV infection: moving forward toward a mucosal AIDS vaccine. Trends Immunol. 2008. 29: 574 – 585.en_US
dc.identifier.citedreferenceBelyakov, I. M., Ahlers, J. D., Nabel, G. J., Moss, B. and Berzofsky, J. A., Generation of functionally active HIV‐1 specific CD8(+) CTL in intestinal mucosa following mucosal, systemic or mixed prime‐boost immunization. Virology 2008. 381: 106 – 115.en_US
dc.identifier.citedreferenceBelyakov, I. M. and Ahlers, J. D., Mucosal immunity and HIV‐1 infection: applications for mucosal AIDS vaccine development. Curr. Top. Microbiol. Immunol. 2011. In press.en_US
dc.identifier.citedreferenceBelyakov, I. M., Hel, Z., Kelsall, B., Kuznetsov, V. A., Ahlers, J. D., Nacsa, J., Watkins, D., et al., Mucosal AIDS vaccine reduces disease and viral load in gut reservoir and blood after mucosal infection of macaques. Nat. Med. 2001. 7: 1320 – 1326.en_US
dc.identifier.citedreferenceBelyakov, I. M., Isakov, D., Zhu, Q., Dzutsev, A. and Berzofsky, J. A., A novel functional CTL avidity/activity compartmentalization to the site of mucosal immunization contributes to protection of macaques against simian/human immunodeficiency viral depletion of mucosal CD4+ T cells. J. Immunol. 2007. 178: 7211 – 7221.en_US
dc.identifier.citedreferenceIsakov, D., Dzutsev, A., Belyakov, I. M. and Berzofsky, J. A., Non‐equilibrium and differential function between intraepithelial and lamina propria virus‐specific TCRalphabeta(+) CD8alphabeta(+) T cells in the small intestinal mucosa. Mucosal Immunol. 2009. 2: 450 – 461.en_US
dc.identifier.citedreferenceOh, S., Perera, L. P., Burke, D. S., Waldmann, T. A. and Berzofsky, J. A., IL‐15/IL‐15R alpha‐mediated avidity maturation of memory CD8 + T cells. Proc. Natl. Acad. Sci. USA 2004. 101: 15154 – 15159.en_US
dc.identifier.citedreferenceWaldmann, T. A., Dubois, S. and Tagaya, Y., Contrasting roles of IL‐2 and IL‐15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 2001. 14: 105 – 110.en_US
dc.identifier.citedreferenceBurkett, P. R., Koka, R., Chien, M., Chai, S., Chan, F., Ma, A. and Boone, D. L., IL‐15R alpha expression on CD8+ T cells is dispensable for T cell memory. Proc. Natl. Acad. Sci. USA 2003. 100: 4724 – 4729.en_US
dc.identifier.citedreferenceKunisawa, J., Kurashima, Y., Higuchi, M., Gohda, M., Ishikawa, I., Ogahara, I., Kim, N. et al., Sphingosine 1‐phosphate dependence in the regulation of lymphocyte trafficking to the gut epithelium. J. Exp. Med. 2007. 204: 2335 – 2348.en_US
dc.identifier.citedreferencePorter, B. O. and Malek, T. R., IL‐2Rbeta/IL‐7Ralpha doubly deficient mice recapitulate the thymic and intraepithelial lymphocyte (IEL) developmental defects of gammac‐/‐ mice: roles for both IL‐2 and IL‐15 in CD8alphaalpha IEL development. J. Immunol. 1999. 163: 5906 – 5912.en_US
dc.identifier.citedreferenceMalek, T. R., Levy, R. B., Adkins, B. and He, Y. W., Monoclonal antibodies to the common gamma‐chain as cytokine receptor antagonists in vivo: effect on intrathymic and intestinal intraepithelial T lymphocyte development. J. Leukoc. Biol. 1998. 63: 643 – 649.en_US
dc.identifier.citedreferenceKennedy, M. K., Glaccum, M., Brown, S. N., Butz, E. A., Viney, J. L., Embers, M., Matsuki, N. et al., Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15‐deficient mice. J. Exp. Med. 2000. 191: 771 – 780.en_US
dc.identifier.citedreferenceKaneko, M., Mizunuma, T., Takimoto, H. and Kumazawa, Y., Development of TCR alpha beta CD8 alpha alpha intestinal intraepithelial lymphocytes is promoted by interleukin‐15‐producing epithelial cells constitutively stimulated by gram‐negative bacteria via TLR4. Biol. Pharm. Bull. 2004. 27: 883 – 889.en_US
dc.identifier.citedreferenceSuzuki, H., Duncan, G. S., Takimoto, H. and Mak, T. W., Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL‐2 receptor beta chain. J. Exp. Med. 1997. 185: 499 – 505.en_US
dc.identifier.citedreferenceLaky, K., Lefrancois, L., Lingenheld, E. G., Ishikawa, H., Lewis, J. M., Olson, S., Suzuki, K. et al., Enterocyte expression of interleukin 7 induces development of gammadelta T cells and Peyer's patches. J. Exp. Med. 2000. 191: 1569 – 1580.en_US
dc.identifier.citedreferenceOhta, N., Hiroi, T., Kweon, M. N., Kinoshita, N., Jang, M. H., Mashimo, T., Miyazaki, J. and Kiyono, H., IL‐15‐dependent activation‐induced cell death‐resistant Th1 type CD8 alpha beta+NK1.1+T cells for the development of small intestinal inflammation. J. Immunol. 2002. 169: 460 – 468.en_US
dc.identifier.citedreferenceShires, J., Theodoridis, E. and Hayday, A. C., Biological insights into TCRgammadelta+ and TCRalphabeta+intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 2001. 15: 419 – 434.en_US
dc.identifier.citedreferenceDubois, S., Waldmann, T. A. and Muller, J. R., ITK and IL‐15 support two distinct subsets of CD8+T cells. Proc. Natl. Acad. Sci. USA 2006. 103: 12075 – 12080.en_US
dc.identifier.citedreferenceMatsuyama, T., Kimura, T., Kitagawa, M., Pfeffer, K., Kawakami, T., Watanabe, N., Kundig, T. M. et al., Targeted disruption of IRF‐1 or IRF‐2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 1993. 75: 83 – 97.en_US
dc.identifier.citedreferenceOhteki, T., Yoshida, H., Matsuyama, T., Duncan, G. S., Mak, T. W. and Ohashi, P. S., The transcription factor interferon regulatory factor 1 (IRF‐1) is important during the maturation of natural killer 1.1+ T cell receptor‐alpha/beta+(NK1+T) cells, natural killer cells, and intestinal intraepithelial T cells. J. Exp. Med. 1998. 187: 967 – 972.en_US
dc.identifier.citedreferenceHuleatt, J. W. and Lefrancois, L., Beta2 integrins and ICAM‐1 are involved in establishment of the intestinal mucosal T cell compartment. Immunity 1996. 5: 263 – 273.en_US
dc.identifier.citedreferenceYajima, T., Nishimura, H., Sad, S., Shen, H., Kuwano, H. and Yoshikai, Y., A novel role of IL‐15 in early activation of memory CD8+CTL after reinfection. J. Immunol. 2005. 174: 3590 – 3597.en_US
dc.identifier.citedreferenceAhlers, J. D., Belyakov, I. M. and Berzofsky, J. A., Cytokine, chemokine and costimulatory molecule modulation to enhance efficacy of HIV vaccines. Curr. Mol. Med. 2003. 3: 285 – 301.en_US
dc.identifier.citedreferenceAhlers, J. D., Belyakov, I. M., Thomas, E. K. and Berzofsky, J. A., High affinity T‐helper epitope induces complementary helper and APC polarization, increased CTL and protection against viral infection. J. Clin. Invest. 2001. 108: 1677 – 1685.en_US
dc.identifier.citedreferenceAhlers, J. D., Belyakov, I. M., Matsui, S. and Berzofsky, J. A., Mechanisms of cytokine synergy essential for vaccine protection against viral challenge. Int. Immunol. 2001. 13: 897 – 908.en_US
dc.identifier.citedreferenceHodge, J. W., Grosenbach, D. W., Rad, A. N., Giuliano, M., Sabzevari, H. and Schlom, J., Enhancing the potency of peptide‐pulsed antigen presenting cells by vector‐driven hyperexpression of a triad of costimulatory molecules. Vaccine 2001. 19: 3552 – 3567.en_US
dc.identifier.citedreferenceZhu, Q., Egelston, C., Vivekanandhan, A., Uematsu, S., Akira, S., Klinman, D. M., Belyakov, I. M. and Berzofsky, J. A., Toll‐like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: implications for vaccines. Proc. Natl. Acad. Sci. USA 2008. 105: 16260 – 16265.en_US
dc.identifier.citedreferenceZhu, Q., Egelston, C., Gagnon, S., Sui, Y., Belyakov, I. M., Klinman, D. M. and Berzofsky, J. A., Using 3 TLR ligands as a combination adjuvant induces qualitative changes in T cell responses needed for antiviral protection in mice. J. Clin. Invest. 2010. 120: 607 – 616.en_US
dc.identifier.citedreferenceStaats, H. F., Bradney, C. P., Gwinn, W. M., Jackson, S. S., Sempowski, G. D., Liao, H. X., Letvin, N. L. and Haynes, B. F., Cytokine requirements for induction of systemic and mucosal CTL after nasal immunization. J. Immunol. 2001. 167: 5386 – 5394.en_US
dc.identifier.citedreferenceAhlers, J. D., Belyakov, I. M., Terabe, M., Koka, R., Donaldson, D. D., Thomas, E. and Berzofsky, J. A., A push‐pull approach to maximize vaccine efficacy: abrogating suppression with an IL‐13 inhibitor while augmenting help with GM‐CSF and CD40L. Proc. Natl. Acad. Sci. USA 2002. 99: 13020 – 13025.en_US
dc.identifier.citedreferencePalazzo, M., Gariboldi, S., Zanobbio, L., Selleri, S., Dusio, G. F., Mauro, V., Rossini, A. et al., Sodium‐dependent glucose transporter‐1 as a novel immunological player in the intestinal mucosa. J. Immunol. 2008. 181: 3126 – 3136.en_US
dc.identifier.citedreferenceIna, K., Kusugami, K., Kawano, Y., Nishiwaki, T., Wen, Z., Musso, A., West, G. A., et al., Intestinal fibroblast‐derived IL‐10 increases survival of mucosal T cells by inhibiting growth factor deprivation‐ and Fas‐mediated apoptosis. J. Immunol. 2005. 175: 2000 – 2009.en_US
dc.identifier.citedreferenceBrunner, T., Arnold, D., Wasem, C., Herren, S. and Frutschi, C., Regulation of cell death and survival in intestinal intraepithelial lymphocytes. Cell Death Differ. 2001. 8: 706 – 714.en_US
dc.identifier.citedreferenceEagle, R. A. and Trowsdale, J., Promiscuity and the single receptor: NKG2D. Nat. Rev. Immunol. 2007. 7: 737 – 744.en_US
dc.identifier.citedreferenceJamieson, A. M., Diefenbach, A., McMahon, C. W., Xiong, N., Carlyle, J. R. and Raulet, D. H., The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity 2002. 17: 19 – 29.en_US
dc.identifier.citedreferenceDhanji, S. and Teh, H. S., IL‐2‐activated CD8+CD44high cells express both adaptive and innate immune system receptors and demonstrate specificity for syngeneic tumor cells. J. Immunol. 2003. 171: 3442 – 3450.en_US
dc.identifier.citedreferencePardigon, N., Darche, S., Kelsall, B., Bennink, J. R. and Yewdell, J. W., The TL MHC class Ib molecule has only marginal effects on the activation, survival and trafficking of mouse small intestinal intraepithelial lymphocytes. Int. Immunol. 2004. 16: 1305 – 1313.en_US
dc.identifier.citedreferenceMayr, A., Hochstein‐Mintzel, V. and Stickl, H., Abstammung, eigenschaften and verwendung des attenuierten vaccinia‐stammes MVA. Infection 1975. 3: 6 – 14.en_US
dc.identifier.citedreferenceBelyakov, I. M., Wyatt, L. S., Ahlers, J. D., Earl, P., Pendleton, C. D., Kelsall, B. L., Strober, W. et al., Induction of mucosal CTL response by intrarectal immunization with a replication‐deficient recombinant vaccinia virus expressing HIV 89.6 envelope protein. J. Virol. 1998. 72: 8264 – 8272.en_US
dc.identifier.citedreferenceDzutsev, A. H., Belyakov, I. M., Isakov, D. V., Margulies, D. H. and Berzofsky, J. A., Avidity of CD8 T cells sharpens immunodominance. Int. Immunol. 2007. 19: 497 – 507.en_US
dc.identifier.citedreferenceBelyakov, I. M., Isakov, D., Zhu, Q., Dzutsev, A., Klinman, D. and Berzofsky, J. A., Enhancement of CD8+ T cell immunity in the lung by CpG ODN increases protective efficacy of a Modified Vaccinia Ankara vaccine against lethal poxvirus infection even in CD4‐deficient host. J. Immunol. 2006. 177: 6336 – 6343.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.