Show simple item record

Immobilized thermolysin for highly efficient production of low‐molecular‐weight protamine—An attractive cell‐penetrating peptide for macromolecular drug delivery applications

dc.contributor.authorDavid, Allan E.en_US
dc.contributor.authorGong, Junboen_US
dc.contributor.authorChertok, Beataen_US
dc.contributor.authorDomszy, Roman C.en_US
dc.contributor.authorMoon, Cheolen_US
dc.contributor.authorPark, Yoon Shinen_US
dc.contributor.authorWang, Nam Sunen_US
dc.contributor.authorYang, Arthur J.en_US
dc.contributor.authorYang, Victor C.en_US
dc.date.accessioned2011-12-05T18:34:41Z
dc.date.available2013-03-04T15:29:55Zen_US
dc.date.issued2012-01en_US
dc.identifier.citationDavid, Allan E.; Gong, Junbo; Chertok, Beata; Domszy, Roman C.; Moon, Cheol; Park, Yoon Shin; Wang, Nam Sun; Yang, Arthur J.; Yang, Victor C. (2012). "Immobilized thermolysin for highly efficient production of low‐molecular‐weight protamine—An attractive cell‐penetrating peptide for macromolecular drug delivery applications ." Journal of Biomedical Materials Research Part A 100A(1): 211-219. <http://hdl.handle.net/2027.42/88093>en_US
dc.identifier.issn1549-3296en_US
dc.identifier.issn1552-4965en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/88093
dc.description.abstractMacromolecules present a remarkable potential as future therapeutics. However, their translation into clinical practice has been hampered by an inherently low bioavailability. Cell‐penetrating peptides (CPP) have been recently shown to significantly improve on the bioavailability of macromolecules. Yet, the high cost associated with development and production of these peptides is a major factor hindering their rapid deployment beyond the laboratory. Here, we describe a facile and robust methodology for efficient and large‐scale production of low‐molecular‐weight protamine—a potent CPP of great clinical potential. Our methodology is based on the immobilization of thermolysin, an enzyme catalyzing digestion of native protamine, on chemically surface‐modified gels produced by silica sol–gel chemistry. Thermolysin was immobilized at extremely high matrix loading of 733 mg/g matrix and exhibited good thermal and pH stability, indicating robustness with respect to processing conditions. The mechanical properties of the silica matrix further allowed utilization of the immobilized thermolysin in both batch and packed‐bed reactor systems to produce the LMWP peptide in high yields. Results presented here are of high significance as this efficient and cost‐effective production of high purity LMWP could enable clinical translation of many potential macromolecular drugs. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherEnzyme Immobilizationen_US
dc.subject.otherSol–Gel Silicaen_US
dc.subject.otherThermolysinen_US
dc.subject.otherPeptide Synthesisen_US
dc.subject.otherProtamineen_US
dc.subject.otherLMWPen_US
dc.subject.otherCell‐Penetrating Peptideen_US
dc.titleImmobilized thermolysin for highly efficient production of low‐molecular‐weight protamine—An attractive cell‐penetrating peptide for macromolecular drug delivery applicationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pharmaceutical Science, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Pharmaceutical Science, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherDepartment of Chemical Engineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland 20742en_US
dc.contributor.affiliationotherIndustrial Science & Technology Network (ISTN) Inc., York, Pennsylvania 17404en_US
dc.contributor.affiliationotherTianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, Chinaen_US
dc.contributor.affiliationotherIndustrial Science & Technology Network (ISTN) Inc., York, Pennsylvania 17404en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/88093/1/33244_ftp.pdf
dc.identifier.doi10.1002/jbm.a.33244en_US
dc.identifier.sourceJournal of Biomedical Materials Research Part Aen_US
dc.identifier.citedreferenceKane MD, Jatkoe TA, Stumpf CR, Lu J, Thomas JD, Madore SJ. Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Res 2000; 28: 4552 – 4557.en_US
dc.identifier.citedreferenceFisher AA, Ye D, Sergueev DS, Fisher MH, Shaw BR, Juliano RL. Evaluating the specificity of antisense oligonucleotide conjugates. J Biol Chem 2002; 277: 22980 – 22984.en_US
dc.identifier.citedreferenceTidd D. Specificity of antisense oligonucleotides. Perspect Drug Discov Des 1996; 4: 51 – 60.en_US
dc.identifier.citedreferenceJuliano R. Challenges to macromolecular drug delivery. Biochem Soc Trans 2007; 035: 41 – 43.en_US
dc.identifier.citedreferenceNoguchi H, Matsumoto S. Protein transduction technology: A novel therapeutic perspective. Acta Med Okayama 2006; 60: 1 – 11.en_US
dc.identifier.citedreferenceSchwarze SR, Ho A, Vocero‐Akbani A, Dowdy SF. In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science 1999; 285: 1569 – 1572.en_US
dc.identifier.citedreferenceLiang JF, Yang VC. Insulin‐cell penetrating peptide hybrids with improved intestinal absorption efficiency. Biochem Biophys Res Commun 2005; 335: 734 – 738.en_US
dc.identifier.citedreferenceJafari M, Chen P. Peptide mediated siRNA delivery. Curr Top Med Chem 2009; 9: 1088 – 1097.en_US
dc.identifier.citedreferenceTorchilin VP. Tat peptide‐mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev 2008; 60: 548 – 558.en_US
dc.identifier.citedreferenceChugh A, Eudes F, Shim YS. Cell‐penetrating peptides: Nanocarrier for macromolecule delivery in living cells. IUBMB Life 2010; 62: 183 – 193.en_US
dc.identifier.citedreferenceFonseca SB, Pereira MP, Kelley SO. Recent advances in the use of cell‐penetrating peptides for medical and biological applications. Adv Drug Deliv Rev 2009; 61: 953 – 964.en_US
dc.identifier.citedreferenceChen L, Harrison SD. Cell‐penetrating peptides in drug development: Enabling intracellular targets. Biochem Soc Trans 2007; 35 ( Part 4 ): 821 – 825.en_US
dc.identifier.citedreferenceTemsamani J, Vidal P. The use of cell‐penetrating peptides for drug delivery. Drug Discov Today 2004; 9: 1012 – 1019.en_US
dc.identifier.citedreferenceChang LC, Lee HF, Yang Z, Yang VC. Low molecular weight protamine (LMWP) as nontoxic heparin/low molecular weight heparin antidote (I): Preparation and characterization. AAPS PharmSci 2001; 3: E17.en_US
dc.identifier.citedreferenceByun Y, Singh VK, Yang VC. Low molecular weight protamine: A potential nontoxic heparin antagonist. Thromb Res 1999; 94: 53 – 61.en_US
dc.identifier.citedreferenceByun Y, Chang LC, Lee LM, Han IS, Singh VK, Yang VC. Low molecular weight protamine: A potent but nontoxic antagonist to heparin/low molecular weight protamine. ASAIO J 2000; 46: 435 – 439.en_US
dc.identifier.citedreferencePark YJ, Liang JF, Ko KS, Kim SW, Yang VC. Low molecular weight protamine as an efficient and nontoxic gene carrier: In vitro study. J Gene Med 2003; 5: 700 – 711.en_US
dc.identifier.citedreferencePark YS, Huang Y, Park YJ, David AE, White L, He H, Chung HS, Yang VC. Specific down regulation of 3T3‐L1 adipocyte differentiation by cell‐permeable antisense HIF1alpha‐oligonucleotide. J Control Release 2010; 144: 82 – 90.en_US
dc.identifier.citedreferenceChoi YS, Lee JY, Suh JS, Kwon YM, Lee SJ, Chung JK, Lee DS, Yang VC, Chung CP, Park YJ. The systemic delivery of siRNAs by a cell penetrating peptide, low molecular weight protamine. Biomaterials 2010; 31: 1429 – 1443.en_US
dc.identifier.citedreferencePark YJ, Chang LC, Liang JF, Moon C, Chung CP, Yang VC. Nontoxic membrane translocation peptide from protamine, low molecular weight protamine (LMWP), for enhanced intracellular protein delivery: In vitro and in vivo study. FASEB J 2005; 19: 1555 – 1557.en_US
dc.identifier.citedreferenceKwon YM, Chung HS, Moon C, Yockman J, Park YJ, Gitlin SD, David AE, Yang VC. L‐Asparaginase encapsulated intact erythrocytes for treatment of acute lymphoblastic leukemia (ALL). J Control Release 2009; 139: 182 – 189.en_US
dc.identifier.citedreferenceMoon C, Kwon YM, Lee WK, Park YJ, Yang VC. In vitro assessment of a novel polyrotaxane‐based drug delivery system integrated with a cell‐penetrating peptide. J Control Release 2007; 124: 43 – 50.en_US
dc.identifier.citedreferenceMoon C, Kwon YM, Lee WK, Park YJ, Chang LC, Yang VC. A novel polyrotaxane‐based intracellular delivery system for camptothecin: in vitro feasibility evaluation. J Biomed Mater Res A 2008; 84: 238 – 246.en_US
dc.identifier.citedreferenceSuh JS, Lee JY, Choi YS, Yu F, Yang V, Lee SJ, Chung CP, Park YJ. Efficient labeling of mesenchymal stem cells using cell permeable magnetic nanoparticles. Biochem Biophys Res Commun 2009; 379: 669 – 675.en_US
dc.identifier.citedreferenceChang LC, Liang JF, Lee HF, Lee LM, Yang VC. Low molecular weight protamine (LMWP) as nontoxic heparin/low molecular weight heparin antidote (II): In vitro evaluation of efficacy and toxicity. AAPS PharmSci 2001; 3: E18.en_US
dc.identifier.citedreferenceLee LM, Chang LC, Wrobleski S, Wakefield TW, Yang VC. Low molecular weight protamine as nontoxic heparin/low molecular weight heparin antidote (III): Preliminary in vivo evaluation of efficacy and toxicity using a canine model. AAPS PharmSci 2001; 3: E19.en_US
dc.identifier.citedreferenceLiang JF, Zhen L, Chang LC, Yang VC. A less toxic heparin antagonist—Low molecular weight protamine. Biochemistry (Mosc) 2003; 68: 116 – 120.en_US
dc.identifier.citedreferenceChang LC, Lee HF, Yang ZQ, Yang VC. Low molecular weight protamine (LMWP) as nontoxic heparin/low molecular weight heparin antidote (I): Preparation and characterization. AAPS Pharmsci 2001; 3.en_US
dc.identifier.citedreferenceDavid AE, Wang NS, Yang VC, Yang AJ. Chemically surface modified gel (CSMG): An excellent enzyme‐immobilization matrix for industrial processes. J Biotechnol 2006; 125: 395 – 407.en_US
dc.identifier.citedreferenceBradford MM. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein‐dye binding. Anal Biochem 1976; 72: 248 – 254.en_US
dc.identifier.citedreferenceZou ZC, Wei Q, Na W, Sun H, Nie ZR. Immobilization of papain on siliceous mesocellular foam. J Inorg Mater 2009; 24: 702 – 706.en_US
dc.identifier.citedreferenceTischer W, Wedekind F. Immobilized Enzymes: Methods and Applications. Biocatalysis‐from Discovery to Application. Berlin: Springer‐Verlag Berlin; 1999. p 95 – 126.en_US
dc.identifier.citedreferencePerry CC, Li XC. Structural studies of gel phases. I. Infrared spectroscopic study of silica monoliths‐The effect of thermal history on structure. J Chem Soci Faraday Trans 1991; 87: 761 – 766.en_US
dc.identifier.citedreferenceDe G, Kundu D, Karmakar B, Ganguli D. FTIR studies of gel to glass conversion in TEOS fumed silica‐derived gels. J Non‐Cryst Solids 1993; 155: 253 – 258.en_US
dc.identifier.citedreferenceWoignier T, Despetis F, Alaoui A, Etienne P, Phalippou J. Mechanical properties of gel‐derived materials. J Sol‐Gel Sci Technol 2000; 19: 163 – 169.en_US
dc.identifier.citedreferenceDavid AE, Yang AJ, Wang NS. Enzyme stabilization and immobilization by sol‐gel entrapment. In: Minteer SD, editor. Enzyme Stabilization and Immobilization: Methods and Protocols. New York, NY: Humana Press; 2011. p 49 – 66.en_US
dc.identifier.citedreferenceBelyaeva AV, Smirnova YA, Lysogorskaya EN, Oksenoit ES, Timofeeva AV, Lozinskii VI, Filippova IY. Biocatalytic properties of thermolysin immobilized on polyvinyl alcohol cryogel. Russ J Bioorg Chem 2008; 34: 435 – 441.en_US
dc.identifier.citedreferenceHoshino K, Taniguchi M, Kawaberi H, Takeda Y, Morohashi S, Sasakura T. Preparation of a novel thermo‐responsive polymer and its use as a carrier for immobilization of thermolysin. J Ferment Bioeng 1997; 83: 246 – 252.en_US
dc.identifier.citedreferenceGuisan JM, Polo E, Aguado J, Romero MD, Alvaro G, Guerra MJ. Immobilization‐stabilization of thermolysin onto activated agarose gels. Biocatal Biotransform 1997; 15: 159 – 173.en_US
dc.identifier.citedreferenceClark DS. Can immobilization be exploited to modify enzyme activity? Trends Biotechnol 1994; 12: 439 – 443.en_US
dc.identifier.citedreferenceMatthews BW, Weaver LH, Kester WR. The conformation of thermolysin. J Biol Chem 1974; 249: 8030 – 8044.en_US
dc.identifier.citedreferenceAtia KS, El‐Batal A. Preparation of glucose oxidase immobilized in different carriers using radiation polymerization. J Chem Technol Biotechnol 2005; 80: 805 – 811.en_US
dc.identifier.citedreferenceArica MY, Hasirci V, Alaeddinoglu NG. Covalent immobilization of alpha‐amylase onto PHEMA microspheres—Preparation and application to fixed‐bed reactor. Biomaterials 1995; 16: 761 – 768.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.