Show simple item record

Haplotype variation and genotype imputation in African populations

dc.contributor.authorHuang, Lucyen_US
dc.contributor.authorJakobsson, Mattiasen_US
dc.contributor.authorPemberton, Trevor J.en_US
dc.contributor.authorIbrahim, Muntaseren_US
dc.contributor.authorNyambo, Thomasen_US
dc.contributor.authorOmar, Sabahen_US
dc.contributor.authorPritchard, Jonathan K.en_US
dc.contributor.authorTishkoff, Sarah A.en_US
dc.contributor.authorRosenberg, Noah A.en_US
dc.date.accessioned2011-12-05T18:34:51Z
dc.date.available2013-02-01T20:26:19Zen_US
dc.date.issued2011-12en_US
dc.identifier.citationHuang, Lucy; Jakobsson, Mattias; Pemberton, Trevor J.; Ibrahim, Muntaser; Nyambo, Thomas; Omar, Sabah; Pritchard, Jonathan K.; Tishkoff, Sarah A.; Rosenberg, Noah A. (2011). "Haplotype variation and genotype imputation in African populations." Genetic Epidemiology 35(8): 766-780. <http://hdl.handle.net/2027.42/88099>en_US
dc.identifier.issn0741-0395en_US
dc.identifier.issn1098-2272en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/88099
dc.description.abstractSub‐Saharan Africa has been identified as the part of the world with the greatest human genetic diversity. This high level of diversity causes difficulties for genome‐wide association (GWA) studies in African populations—for example, by reducing the accuracy of genotype imputation in African populations compared to non‐African populations. Here, we investigate haplotype variation and imputation in Africa, using 253 unrelated individuals from 15 Sub‐Saharan African populations. We identify the populations that provide the greatest potential for serving as reference panels for imputing genotypes in the remaining groups. Considering reference panels comprising samples of recent African descent in Phase 3 of the HapMap Project, we identify mixtures of reference groups that produce the maximal imputation accuracy in each of the sampled populations. We find that optimal HapMap mixtures and maximal imputation accuracies identified in detailed tests of imputation procedures can instead be predicted by using simple summary statistics that measure relationships between the pattern of genetic variation in a target population and the patterns in potential reference panels. Our results provide an empirical basis for facilitating the selection of reference panels in GWA studies of diverse human populations, especially those of African ancestry. Genet. Epidemiol . 35:766–780, 2011. © 2011 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherHaplotype Variationen_US
dc.subject.otherImputationen_US
dc.subject.otherLinkage Disequilibriumen_US
dc.titleHaplotype variation and genotype imputation in African populationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCenter for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherDepartment of Evolutionary Biology, Uppsala University, Uppsala, Swedenen_US
dc.contributor.affiliationotherDepartment of Biology, Stanford University, Stanford, Californiaen_US
dc.contributor.affiliationotherDepartment of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudanen_US
dc.contributor.affiliationotherDepartment of Biochemistry, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzaniaen_US
dc.contributor.affiliationotherKenya Medical Research Institute, Center for Biotechnology Research and Development, Nairobi, Kenyaen_US
dc.contributor.affiliationotherDepartment of Human Genetics and Howard Hughes Medical Institute, University of Chicago, Chicago, Illinoisen_US
dc.contributor.affiliationotherDepartment of Biology and Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvaniaen_US
dc.contributor.affiliationotherDepartment of Biology, Stanford University, Stanford, Californiaen_US
dc.identifier.pmid22125220en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/88099/1/20626_ftp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/88099/2/gepi_20626_sm_SuppInfo.pdf
dc.identifier.doi10.1002/gepi.20626en_US
dc.identifier.sourceGenetic Epidemiologyen_US
dc.identifier.citedreferenceAdeyemo A, Gerry N, Chen G, Herbert A, Doumatey A, Huang H, Zhou J, Lashley K, Chen Y, Christman M, Rotimi C. 2009. A genome‐wide association study of hypertension and blood pressure in African Americans. PLoS Genet 5: e1000564.en_US
dc.identifier.citedreferenceBowcock AM, Ruiz‐Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli‐Sforza LL. 1994. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455 – 457.en_US
dc.identifier.citedreferenceBrowning SR, Browning BL. 2007. Rapid and accurate haplotype phasing and missing‐data inference for whole‐genome association studies by use of localized haplotype clustering. Am J Hum Genet 81: 1084 – 1097.en_US
dc.identifier.citedreferenceBrowning BL, Browning SR. 2009. A unified approach to genotype imputation and haplotype‐phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84: 210 – 223.en_US
dc.identifier.citedreferenceBryc K, Auton A, Nelson MR, Oksenberg JR, Hauser SL, Williams S, Froment A, Bodo JM, Wambebe C, Tishkoff SA, Bustamante CD. 2010. Genome‐wide patterns of population structure and admixture in West Africans and African Americans. Proc Natl Acad Sci USA 107: 786 – 791.en_US
dc.identifier.citedreferenceConrad DF, Jakobsson M, Coop G, Wen X, Wall JD, Rosenberg NA, Pritchard JK. 2006. A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nat Genet 38: 1251 – 1260.en_US
dc.identifier.citedreferenceEgyud MRL, Gajdos ZKZ, Butler JL, Tischfield S, Le Marchand L, Kolonel LN, Haiman CA, Henderson BE, Hirschhorn JN. 2009. Use of weighted reference panels based on empirical estimates of ancestry for capturing untyped variation. Hum Genet 125: 295 – 303.en_US
dc.identifier.citedreferenceHenn BM, Gignoux CR, Jobin M, Granka JM, Macpherson JM, Kidd JM, Rodríguez‐Botigué L, Ramachandran S, Hon L, Brisbin A, Lin AA, Underhill PA, Comas D, Kidd KK, Norman PJ, Parham P, Bustamante CD, Mountain JL, Feldman MW. 2011. Hunter‐gatherer genomic diversity suggests a southern African origin for modern humans. Proc Natl Acad Sci USA 108: 5154 – 5162.en_US
dc.identifier.citedreferenceHowie BN, Donnelly P, Marchini J. 2009. A flexible and accurate genotype imputation method for the next generation of genome‐wide association studies. PLoS Genet 5: e1000529.en_US
dc.identifier.citedreferenceHuang L, Li Y, Singleton AB, Hardy JA, Abecasis G, Rosenberg NA, Scheet P. 2009a. Genotype‐imputation accuracy across worldwide human populations. Am J Hum Genet 84: 235 – 250.en_US
dc.identifier.citedreferenceHuang L, Wang C, Rosenberg NA. 2009b. The relationship between imputation error and statistical power in genetic association studies in diverse populations. Am J Hum Genet 85: 692 – 698.en_US
dc.identifier.citedreferenceInternational HapMap 3 Consortium. 2010. Integrating common and rare genetic variation in diverse human populations. Nature 467: 52 – 58.en_US
dc.identifier.citedreferenceJakobsson M, Scholz SW, Scheet P, Gibbs JR, VanLiere JM, Fung HC, Szpiech ZA, Degnan JH, Wang K, Guerreiro R, Bras JM, Schymick JC, Hernandez DG, Traynor BJ, Simon‐Sanchez J, Matarin M, Britton A, van de Leemput J, Rafferty I, Bucan M, Cann HM, Hardy JA, Rosenberg NA, Singleton AB. 2008. Genotype, haplotype and copy‐number variation in worldwide human populations. Nature 451: 998 – 1003.en_US
dc.identifier.citedreferenceJallow M, Teo YY, Small KS, Rockett KA, Deloukas P, Clark TG, Kivinen K, Bojang KA, Conway DJ, Pinder M, Sirugo G, Sisay‐Joof F, Usen S, Auburn S, Bumpstead SJ, Campino S, Coffey A, Dunham A, Fry AE, Green A, Gwilliam R, Hunt SE, Inouye M, Jeffreys AE, Mendy A, Palotie A, Potter S, Ragoussis J, Rogers J, Rowlands K, Somaskantharajah E, Whittaker P, Widden C, Donnelly P, Howie B, Marchini J, Morris A, SanJoaquin M, Achidi EA, Agbenyega T, Allen A, Amodu O, Corran P, Djimde A, Dolo A, Doumbo OK, Drakeley C, Dunstan S, Evans J, Farrar J, Fernando D, Hien TT, Horstmann RD, Ibrahim M, Karunaweera N, Kokwaro G, Koram KA, Lemnge M, Makani J, Marsh K, Michon P, Modiano D, Molyneux ME, Mueller I, Parker M, Peshu N, Plowe CV, Puijalon O, Reeder J, Reyburn H, Riley EM, Sakuntabhai A, Singhasivanon P, Sirima S, Tall A, Taylor TE, Thera M, Troye‐Blomberg M, Williams TN, Wilson M, Kwiatkowski DP, Wellcome Trust Case Control Consortium, Malaria Genomic Epidemiology Network. 2009. Genome‐wide and fine‐resolution association analysis of malaria in West Africa. Nat Genet 41: 657 – 665.en_US
dc.identifier.citedreferenceKalinowski ST. 2004. Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5: 539 – 543.en_US
dc.identifier.citedreferenceLi Y, Ding J, Abecasis GR. 2006. Mach 1.0: rapid haplotype reconstruction and missing genotype inference. Am J Hum Genet 79: S2290.en_US
dc.identifier.citedreferenceLi Y, Willer CJ, Sanna S, Abecasis G. 2009. Genotype imputation. Annu Rev Genom Hum Genet 10: 387 – 406.en_US
dc.identifier.citedreferenceLi Y, Willer CJ, Ding J, Scheet P, Abecasis GR. 2010. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34: 816 – 834.en_US
dc.identifier.citedreferenceMarchini J, Howie B, Myers S, McVean G, Donnelly P. 2007. A new multipoint method for genome‐wide association studies by imputation of genotypes. Nat Genet 39: 906 – 913.en_US
dc.identifier.citedreferencePaşaniuc B, Avinery R, Gur T, Skibola CF, Bracci PM, Halperin E. 2010. A generic coalescent‐based framework for the selection of a reference panel for imputation. Genet Epidemiol 34: 773 – 782.en_US
dc.identifier.citedreferencePemberton TJ, Jakobsson M, Conrad DF, Coop G, Wall JD, Pritchard JK, Patel PI, Rosenberg NA. 2008. Using population mixtures to optimize the utility of genomic databases: linkage disequilibrium and association study design in India. Ann Hum Genet 72: 535 – 546.en_US
dc.identifier.citedreferencePemberton TJ, Wang C, Li JZ, Rosenberg NA. 2010. Inference of unexpected genetic relatedness among individuals in HapMap Phase III. Am J Hum Genet 87: 457 – 464.en_US
dc.identifier.citedreferenceRamachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman MW, Cavalli‐Sforza LL. 2005. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc Natl Acad Sci USA 102: 15942 – 15947.en_US
dc.identifier.citedreferenceReich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, Lavery T, Kouyoumjian R, Farhadian SF, Ward R, Lander ES. 2001. Linkage disequilibrium in the human genome. Nature 411: 199 – 204.en_US
dc.identifier.citedreferenceRosenberg NA, Huang L, Jewett EM, Szpiech ZA, Jankovic I, Boehnke M. 2010. Genome‐wide association studies in diverse populations. Nat Rev Genet 11: 356 – 366.en_US
dc.identifier.citedreferenceScheet P, Stephens M. 2006. A fast and flexible statistical model for large‐scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78: 629 – 644.en_US
dc.identifier.citedreferenceScheinfeldt LB, Soi S, Tishkoff SA. 2010. Working toward a synthesis of archaeological, linguistic, and genetic data for inferring African population history. Proc Natl Acad Sci USA 107: 8931 – 8938.en_US
dc.identifier.citedreferenceServin B, Stephens M. 2007. Imputation‐based analysis of association studies: candidate regions and quantitative traits. PLoS Genet 3: e114.en_US
dc.identifier.citedreferenceShriner D, Adeyemo A, Chen G, Rotimi CN. 2010. Practical considerations for imputation of untyped markers in admixed populations. Genet Epidemiol 34: 258 – 265.en_US
dc.identifier.citedreferenceStephens JC, Schneider JA, Tanguay DA, Choi J, Acharya T, Stanley SE, Jiang R, Messer CJ, Chew A, Han JH, Duan J, Carr JL, Lee MS, Koshy B, Kumar AM, Zhang G, Newell WR, Windemuth A, Xu C, Kalbfleisch TS, Shaner SL, Arnold K, Schulz V, Drysdale CM, Nandabalan K, Judson RS, Ruaño G, Vovis GF. 2001. Haplotype variation and linkage disequilibrium in 313 human genes. Science 293: 489 – 493.en_US
dc.identifier.citedreferenceTeo YY, Small KS, Kwiatkowski DP. 2010. Methodological challenges of genome‐wide association analysis in Africa. Nat Rev Genet 11: 149 – 160.en_US
dc.identifier.citedreferenceTishkoff SA, Kidd KK. 2004. Implications of biogeography of human populations for “race” and medicine. Nat Genet 36: S21 – S27.en_US
dc.identifier.citedreferenceTishkoff SA, Reed FA, Friedlaender FR, Ehret C, Ranciaro A, Froment A, Hirbo JB, Awomoyi AA, Bodo JM, Doumbo O, Ibrahim M, Juma AT, Kotze MJ, Lema G, Moore JH, Mortensen H, Nyambo TB, Omar SA, Powell K, Pretorius GS, Smith MW, Thera MA, Wambebe C, Weber JL, Williams SM. 2009. The genetic structure and history of Africans and African Americans. Science 324: 1035 – 1044.en_US
dc.identifier.citedreferenceWeir BS. 1996. Genetic Data Analysis II. Sunderland, MA: Sinauer Associates.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.