Show simple item record

The Mediterranean diet: Effects on proteins that mediate fatty acid metabolism in the colon

dc.contributor.authorDjuric, Zoraen_US
dc.date.accessioned2011-12-05T18:34:55Z
dc.date.available2013-02-01T20:26:19Zen_US
dc.date.issued2011-12en_US
dc.identifier.citationDjuric, Zora (2011). "The Mediterranean diet: Effects on proteins that mediate fatty acid metabolism in the colon." Nutrition Reviews 69(12). <http://hdl.handle.net/2027.42/88101>en_US
dc.identifier.issn0029-6643en_US
dc.identifier.issn1753-4887en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/88101
dc.publisherBlackwell Publishing Incen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherDietary Interventionen_US
dc.subject.otherFatty Acidsen_US
dc.subject.otherInflammationen_US
dc.subject.otherMediterranean Dieten_US
dc.subject.otherProteomicsen_US
dc.titleThe Mediterranean diet: Effects on proteins that mediate fatty acid metabolism in the colonen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Family Medicine and Environmental Health Sciences (Nutrition Program), University of Michigan, Ann Arbor, Michigan, USAen_US
dc.identifier.pmid22133197en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/88101/1/j.1753-4887.2011.00439.x.pdf
dc.identifier.doi10.1111/j.1753-4887.2011.00439.xen_US
dc.identifier.sourceNutrition Reviewsen_US
dc.identifier.citedreferenceWorld Cancer Research Fund/American Institute for Cancer Research. Food, Nutrition and Prevention of Cancer: A Global Perspective. Washington, DC: American Institute for Cancer Research; 1997.en_US
dc.identifier.citedreferenceFung TT, Hu FB, Wu K, Chiuve SE, Fuchs CS, Giovannucci E. The Mediterranean and Dietary Approaches to Stop Hypertension (DASH) diets and colorectal cancer. Am J Clin Nutr. 2010; 92: 1429 – 1435.en_US
dc.identifier.citedreferenceSofi F, Abbate R, Gensini GF, Casini A. Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta‐analysis. Am J Clin Nutr. 2010; 92: 1189 – 1196.en_US
dc.identifier.citedreferenceGallus S, Bosetti C, La Vecchia C. Mediterranean diet and cancer risk. Eur J Cancer Prev. 2004; 13: 447 – 452.en_US
dc.identifier.citedreferenceEnglish DR, MacInnis RJ, Hodge AM, Hopper JL, Haydon AM, Giles GG. Red meat, chicken, and fish consumption and risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2004; 13: 1509 – 1514.en_US
dc.identifier.citedreferenceLa Vecchia C. Mediterranean diet and cancer. Public Health Nutr. 2004; 7: 965 – 968.en_US
dc.identifier.citedreferenceKojima M, Wakai K, Tokudome S, et al. Serum levels of polyunsaturated fatty acids and risk of colorectal cancer: a prospective study. Am J Epidemiol. 2005; 161: 462 – 471.en_US
dc.identifier.citedreferenceCottet V, Bonithon‐Kopp C, Kronborg O, et al. Dietary patterns and the risk of colorectal adenoma recurrence in a European intervention trial. Eur J Cancer Prev. 2005; 14: 21 – 29.en_US
dc.identifier.citedreferenceKesse E, Clavel‐Chapelon F, Boutron‐Ruault MC. Dietary patterns and risk of colorectal tumors: a cohort of French women of the National Education System (E3N). Am J Epidemiol. 2006; 164: 1085 – 1093.en_US
dc.identifier.citedreferenceVerberne L, Bach‐Faig A, Buckland G, Serra‐Majem L. Association between the Mediterranean diet and cancer risk: a review of observational studies. Nutr Cancer. 2010; 62: 860 – 870.en_US
dc.identifier.citedreferenceKeys A. Seven Countries: A Multivariate Analysis of Death and Coronary Heart Disease. Cambridge, MA: Harvard University Press; 1980.en_US
dc.identifier.citedreferencePanagiotakos D, Kalogeropoulos N, Pitsavos C, et al. Validation of the MedDietScore via the determination of plasma fatty acids. Int J Food Sci Nutr. 2009; 60 (Suppl 5 ): 168 – 180.en_US
dc.identifier.citedreferenceTrichopoulou A, Bamia C, Trichopoulos D. Anatomy of health effects of Mediterranean diet: Greek EPIC prospective cohort study. BMJ. 2009; 338: b2337.en_US
dc.identifier.citedreferenceBeunza JJ, Toledo E, Hu FB, et al. Adherence to the Mediterranean diet, long‐term weight change, and incident overweight or obesity: the Seguimiento Universidad de Navarra (SUN) cohort. Am J Clin Nutr. 2010; 92: 1484 – 1493.en_US
dc.identifier.citedreferenceBacklund MG, Mann JR, Dubois RN. Mechanisms for the prevention of gastrointestinal cancer: the role of prostaglandin E2. Oncology. 2005; 69 (Suppl 1 ): 28 – 32.en_US
dc.identifier.citedreferenceAmerican Cancer Society. Colorectal Cancer Facts and Figures – Special Edition 2005. Atlanta, GA: American Cancer Society; 2005.en_US
dc.identifier.citedreferenceSchottenfeld D, Fraumeni JF Jr. Cancer Epidemiology and Prevention, 2nd ed. New York: Oxford; 1996.en_US
dc.identifier.citedreferenceMcMichael AJ, McCall MG, Hartshorne JM, Woodings TL. Patterns of gastro‐intestinal cancer in European migrants to Australia: the role of dietary change. Int J Cancer. 1980; 25: 431 – 437.en_US
dc.identifier.citedreferencePaspatis GA, Papanikolaou N, Zois E, Michalodimitrakis E. Prevalence of polyps and diverticulosis of the large bowel in the Cretan population. An autopsy study. Int J Colorectal Dis. 2001; 16: 257 – 261.en_US
dc.identifier.citedreferenceSimopoulos AP. The traditional diet of Greece and cancer. Eur J Cancer Prev. 2004; 13: 219 – 230.en_US
dc.identifier.citedreferenceFrenandez E, Vecchia CL, Gonzales JR, Lucchini F, Negri E, Levi F. Coverging patterns of colorectal cancer mortality in Europe. Eur J Cancer. 2005; 41: 430 – 437.en_US
dc.identifier.citedreferenceMai V, Kant AK, Flood A, Lacey JV Jr, Schairer C, Schatzkin A. Diet quality and subsequent cancer incidence and mortality in a prospective cohort of women. Int J Epidemiol. 2005; 34: 54 – 60.en_US
dc.identifier.citedreferenceKoushik A, Hunter DJ, Spiegelman D, et al. Fruits, vegetables, and colon cancer risk in a pooled analysis of 14 cohort studies. J Natl Cancer Inst. 2007; 99: 1471 – 1483.en_US
dc.identifier.citedreferenceMartinez‐Gonzalez MA, Estruch R. Mediterranean diet, antioxidants and cancer: the need for randomized trials. Eur J Cancer Prev. 2004; 13: 327 – 335.en_US
dc.identifier.citedreferenceKant AK, Schatzkin A, Graubard BI, Schairer C. A prospective study of diet quality and mortality in women. JAMA. 2000; 283: 2109 – 2115.en_US
dc.identifier.citedreferenceGerber MJ, Scali JD, Michaud A, et al. Profiles of a healthful diet and its relationship to biomarkers in a population sample from Mediterranean southern France. J Am Diet Assoc. 2000; 100: 1164 – 1171.en_US
dc.identifier.citedreferenceHoffmann I. Transcending reductionism in nutrition research. Am J Clin Nutr. 2003; 78: S514 – S516.en_US
dc.identifier.citedreferenceTrichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med. 2003; 348: 2599 – 2608.en_US
dc.identifier.citedreferenceDixon LB, Subar AF, Peters U, et al. Adherence to the USDA Food Guide, DASH Eating Plan, and Mediterranean dietary pattern reduces risk of colorectal adenoma. J Nutr. 2007; 137: 2443 – 2450.en_US
dc.identifier.citedreferenceReedy J, Mitrou PN, Krebs‐Smith SM, et al. Index‐based dietary patterns and risk of colorectal cancer: the NIH‐AARP Diet and Health Study. Am J Epidemiol. 2008; 168: 38 – 48.en_US
dc.identifier.citedreferenceMitrou PN, Kipnis V, Thiebaut AC, et al. Mediterranean dietary pattern and prediction of all‐cause mortality in a US population: results from the NIH‐AARP Diet and Health Study. Arch Intern Med. 2007; 167: 2461 – 2468.en_US
dc.identifier.citedreferencePeters U, Sinha R, Chatterjee N, et al. Dietary fibre and colorectal adenoma in a colorectal cancer early detection programme. Lancet. 2003; 361: 1491 – 1495.en_US
dc.identifier.citedreferenceBingham SA, Day NE, Luben R, et al. Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. Lancet. 2003; 361: 1496 – 1501.en_US
dc.identifier.citedreferenceAlberts DS, Einspahr J, Ritenbaugh C, et al. The effect of wheat bran fiber and calcium supplementation on rectal mucosal proliferation rates in patients with resected adenomatous colorectal polyps. Cancer Epidemiol Biomarkers Prev. 1997; 6: 161 – 169.en_US
dc.identifier.citedreferenceSonoshita M, Takaku K, Oshima M, Sugihara K‐I, Taketo MM. Cycloogenase‐2 expression in fibroblasts and endothelial cells of intestinal polyps. Cancer Res. 2002; 62: 6846 – 6849.en_US
dc.identifier.citedreferenceTakeda H, Sonoshita M, Oshima H, et al. Cooperation of cyclooxygenase 1 and cyclooxygenase 2 in intestinal polyposis. Cancer Res. 2003; 63: 4872 – 4877.en_US
dc.identifier.citedreferenceKargman SL, O'Neil GP, Vickers PJ, Evans JF, Mancini JA, Jothy S. Expression of prostaglandin G/H synthase‐1 and ‐2 protein in human colon cancer. Cancer Res. 1995; 55: 2556 – 2559.en_US
dc.identifier.citedreferenceEberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up‐regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology. 1994; 107: 1183 – 1188.en_US
dc.identifier.citedreferenceSano H, Kawahito Y, Wilder RL. Expression of cyclooxygenase‐1 and ‐2 in human colorectal cancer. Cancer Res. 1995; 55: 3785 – 3789.en_US
dc.identifier.citedreferenceChan TA. Cyclooxygenase inhibition and mechanisms of colorectal cancer prevention. Curr Cancer Drug Targets. 2003; 3: 455 – 463.en_US
dc.identifier.citedreferenceKitamura T, Itoh M, Noda T, Matsuura M, Wakabayashi K. Combined effects of cyclooxygenase‐1 and cyclooxygenase‐2 selective inhibitors on intestinal tumorigenesis in adenomatous polyposis coli gene knockout mice. Int J Cancer. 2004; 109: 576 – 580.en_US
dc.identifier.citedreferenceRothwell PM, Wilson M, Elwin CE, et al. Long‐term effect of aspirin on colorectal cancer incidence and mortality: 20‐year follow‐up of five randomised trials. Lancet. 2010; 376: 1741 – 1750.en_US
dc.identifier.citedreferenceSanderson P, Johnson IT, Mathers JC, et al. Emerging diet‐related surrogate end points for colorectal cancer: UK Food Standards Agency diet and colonic health workshop report. Br J Nutr. 2004; 91: 315 – 323.en_US
dc.identifier.citedreferenceFrommel TO, Dyavanapalli M, Oldham T, et al. Effect of aspirin on prostaglandin E2 and leukotriene B4 production in human colonic mucosa from cancer patients. Clin Cancer Res. 1997; 3: 209 – 213.en_US
dc.identifier.citedreferenceSmalley WE, DuBois RN. Colorectal cancer and nonsteroidal anti‐inflammatory drugs. Adv Pharmacol. 1997; 39: 1 – 20.en_US
dc.identifier.citedreferenceSingh J, Hamid R, Reddy BS. Dietary fat and colon cancer: modulation of cyclooxygenase‐2 by types and amount of dietary fat during the postinitiation stage of colon carcinogenesis. Cancer Res. 1997; 57: 3465 – 3470.en_US
dc.identifier.citedreferenceBroughton KS, Wade JW. Total fat and (n‐3):(n‐6) fat ratios influence eicosanoid production in mice. J Nutr. 2002; 132: 88 – 94.en_US
dc.identifier.citedreferenceMooney MA, Vaughn DM, Reinhart GA, et al. Evaluation of the effects of omega‐3 fatty acid‐containing diets on the inflammatory stage of wound healing in dogs. Am J Vet Res. 1998; 59: 859 – 863.en_US
dc.identifier.citedreferenceBoudreau MD, Chanmugam PS, Hart SB, Lee SH, Hwang DH. Lack of dose response by dietary n‐3 fatty acids at a constant ratio of n‐3 to n‐6 fatty acids in suppressing eicosanoid biosynthesis from arachidonic acid. Am J Clin Nutr. 1991; 54: 111 – 117.en_US
dc.identifier.citedreferenceBartoli R, Fernandez‐Banares F, Navarro E, et al. Effect of olive oil on early and late events of colon carcinogenesis in rats: modulation of arachidonic acid metabolism and local prostaglandin E(2) synthesis. Gut. 2000; 46: 191 – 199.en_US
dc.identifier.citedreferenceSchroeder F, Petrescu AD, Huang H, et al. Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids. 2008; 43: 1 – 17.en_US
dc.identifier.citedreferenceRichieri GV, Ogata RT, Zimmerman AW, Veerkamp JH, Kleinfeld AM. Fatty acid binding proteins from different tissues show distinct patterns of fatty acid interactions. Biochemistry. 2000; 39: 7197 – 7204.en_US
dc.identifier.citedreferenceFuruhashi M, Hotamisligil GS. Fatty acid‐binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov. 2008; 7: 489 – 503.en_US
dc.identifier.citedreferencePelsers MM, Namiot Z, Kisielewski W, et al. Intestinal‐type and liver‐type fatty acid‐binding protein in the intestine. Tissue distribution and clinical utility. Clin Biochem. 2003; 36: 529 – 535.en_US
dc.identifier.citedreferenceLevy E, Menard D, Delvin E, et al. Localization, function and regulation of the two intestinal fatty acid‐binding protein types. Histochem Cell Biol. 2009; 132: 351 – 367.en_US
dc.identifier.citedreferenceLenaerts K, Bouwman FG, Lamers WH, Renes J, Mariman EC. Comparative proteomic analysis of cell lines and scrapings of the human intestinal epithelium. BMC Genomics. 2007; 8: 91.en_US
dc.identifier.citedreferenceSweetser DA, Birkenmeier EH, Klisak IJ, et al. The human and rodent intestinal fatty acid binding protein genes. A comparative analysis of their structure, expression, and linkage relationships. J Biol Chem. 1987; 262: 16060 – 16071.en_US
dc.identifier.citedreferenceThumser AE, Storch J. Liver and intestinal fatty acid‐binding proteins obtain fatty acids from phospholipid membranes by different mechanisms. J Lipid Res. 2000; 41: 647 – 656.en_US
dc.identifier.citedreferenceZimmerman AW, Veerkamp JH. New insights into the structure and function of fatty acid‐binding proteins. Cell Mol Life Sci. 2002; 59: 1096 – 1116.en_US
dc.identifier.citedreferenceYamazaki T, Kanda T, Sakai Y, Hatakeyama K. Liver fatty acid‐binding protein is a new prognostic factor for hepatic resection of colorectal cancer metastases. J Surg Oncol. 1999; 72: 83 – 87.en_US
dc.identifier.citedreferenceAdachi M, Kurotani R, Morimura K, et al. Peroxisome proliferator activated receptor gamma in colonic epithelial cells protects against experimental inflammatory bowel disease. Gut. 2006; 55: 1104 – 1113.en_US
dc.identifier.citedreferenceCoe NR, Bernlohr DA. Physiological properties and functions of intracellular fatty acid‐binding proteins. Biochim Biophys Acta. 1998; 1391: 287 – 306.en_US
dc.identifier.citedreferenceZimmer JS, Dyckes DF, Bernlohr DA, Murphy RC. Fatty acid binding proteins stabilize leukotriene A4: competition with arachidonic acid but not other lipoxygenase products. J Lipid Res. 2004; 45: 2138 – 2144.en_US
dc.identifier.citedreferenceMakowski L, Hotamisligil GS. Fatty acid binding proteins – the evolutionary crossroads of inflammatory and metabolic responses. J Nutr. 2004; 134: S2464 – S2468.en_US
dc.identifier.citedreferenceShen J, Pavone A, Mikulec C, et al. Protein expression profiles in the epidermis of cyclooxygenase‐2 transgenic mice by 2‐dimensional gel electrophoresis and mass spectrometry. J Proteome Res. 2007; 6: 273 – 286.en_US
dc.identifier.citedreferenceChapkin RS, Clark AE, Davidson LA, Schroeder F, Zoran DL, Lupton JR. Dietary fiber differentially alters cellular fatty acid‐binding protein expression in exfoliated colonocytes during tumor development. Nutr Cancer. 1998; 32: 107 – 112.en_US
dc.identifier.citedreferenceXiao R, Badger TM, Simmen FA. Dietary exposure to soy or whey proteins alters colonic global gene expression profiles during rat colon tumorigenesis. Mol Cancer. 2005; 4: 1.en_US
dc.identifier.citedreferencePoirier H, Niot I, Degrace P, Monnot MC, Bernard A, Besnard P. Fatty acid regulation of fatty acid‐binding protein expression in the small intestine. Am J Physiol. 1997; 273: G289 – G295.en_US
dc.identifier.citedreferenceClarke SD, Armstrong MK. Cellular lipid binding proteins: expression, function, and nutritional regulation. FASEB J. 1989; 3: 2480 – 2487.en_US
dc.identifier.citedreferenceAlpers DH, Bass NM, Engle MJ, DeSchryver‐Kecskemeti K. Intestinal fatty acid binding protein may favor differential apical fatty acid binding in the intestine. Biochim Biophys Acta. 2000; 1483: 352 – 362.en_US
dc.identifier.citedreferenceMarin C, Perez‐Jimenez F, Gomez P, et al. The Ala54Thr polymorphism of the fatty acid‐binding protein 2 gene is associated with a change in insulin sensitivity after a change in the type of dietary fat. Am J Clin Nutr. 2005; 82: 196 – 200.en_US
dc.identifier.citedreferenceMorcillo S, Rojo‐Martinez G, Cardona F, et al. Effect of the interaction between the fatty acid binding protein 2 gene Ala54Thr polymorphism and dietary fatty acids on peripheral insulin sensitivity: a cross‐sectional study. Am J Clin Nutr. 2007; 86: 1232 – 1237.en_US
dc.identifier.citedreferenceOkada T, Sato NF, Kuromori Y, et al. Thr‐encoding allele homozygosity at codon 54 of FABP 2 gene may be associated with impaired delta 6 desaturase activity and reduced plasma arachidonic acid in obese children. J Atheroscler Thromb. 2006; 13: 192 – 196.en_US
dc.identifier.citedreferenceGoodridge AG. Regulation of the gene for fatty acid synthase. Fed Proc. 1986; 45: 2399 – 2405.en_US
dc.identifier.citedreferenceRashid A, Pizer ES, Moga M, et al. Elevated expression of fatty acid synthase and fatty acid synthetic activity in colorectal neoplasia. Am J Pathol. 1997; 150: 201 – 208.en_US
dc.identifier.citedreferenceHashimoto T, Kusakabe T, Watanabe K, et al. Liver‐type fatty acid‐binding protein is highly expressed in intestinal metaplasia and in a subset of carcinomas of the stomach without association with the fatty acid synthase status in the carcinoma. Pathobiology. 2004; 71: 115 – 122.en_US
dc.identifier.citedreferenceOgino S, Nosho K, Meyerhardt JA, et al. Cohort study of fatty acid synthase expression and patient survival in colon cancer. J Clin Oncol. 2008; 26: 5713 – 5720.en_US
dc.identifier.citedreferenceMenendez JA, Vazquez‐Martin A, Ortega FJ, Fernandez‐Real JM. Fatty acid synthase: association with insulin resistance, type 2 diabetes, and cancer. Clin Chem. 2009; 55: 425 – 438.en_US
dc.identifier.citedreferenceMenendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007; 7: 763 – 777.en_US
dc.identifier.citedreferencePan MH, Lin CC, Lin JK, Chen WJ. Tea polyphenol (‐)‐epigallocatechin 3‐gallate suppresses heregulin‐beta1‐induced fatty acid synthase expression in human breast cancer cells by inhibiting phosphatidylinositol 3‐kinase/Akt and mitogen‐activated protein kinase cascade signaling. J Agric Food Chem. 2007; 55: 5030 – 5037.en_US
dc.identifier.citedreferenceXiao R, Su Y, Simmen RC, Simmen FA. Dietary soy protein inhibits DNA damage and cell survival of colon epithelial cells through attenuated expression of fatty acid synthase. Am J Physiol Gastrointest Liver Physiol. 2008; 294: G868 – G876.en_US
dc.identifier.citedreferenceZhao WH, Gao C, Zhang YX, Tian WX. Evaluation of the inhibitory activities of aceraceous plants on fatty acid synthase. J Enzyme Inhib Med Chem. 2007; 22: 501 – 510.en_US
dc.identifier.citedreferenceMenendez JA, Lupu R. Mediterranean dietary traditions for the molecular treatment of human cancer: anti‐oncogenic actions of the main olive oil's monounsaturated fatty acid oleic acid (18:1n‐9). Curr Pharm Biotechnol. 2006; 7: 495 – 502.en_US
dc.identifier.citedreferenceDias VC, Parsons HG. Modulation in delta 9, delta 6, and delta 5 fatty acid desaturase activity in the human intestinal CaCo‐2 cell line. J Lipid Res. 1995; 36: 552 – 563.en_US
dc.identifier.citedreferenceMenendez JA, Ropero S, Mehmi I, Atlas E, Colomer R, Lupu R. Overexpression and hyperactivity of breast cancer‐associated fatty acid synthase (oncogenic antigen‐519) is insensitive to normal arachidonic fatty acid‐induced suppression in lipogenic tissues but it is selectively inhibited by tumoricidal alpha‐linolenic and gamma‐linolenic fatty acids: a novel mechanism by which dietary fat can alter mammary tumorigenesis. Int J Oncol. 2004; 24: 1369 – 1383.en_US
dc.identifier.citedreferenceNatali F, Siculella L, Salvati S, Gnoni GV. Oleic acid is a potent inhibitor of fatty acid and cholesterol synthesis in C6 glioma cells. J Lipid Res. 2007; 48: 1966 – 1975.en_US
dc.identifier.citedreferenceKearney KE, Pretlow TG, Pretlow TP. Increased expression of fatty acid synthase in human aberrant crypt foci: possible target for colorectal cancer prevention. Int J Cancer. 2009; 125: 249 – 252.en_US
dc.identifier.citedreferenceAlgire C, Amrein L, Zakikhani M, Panasci L, Pollak M. Metformin blocks the stimulative effect of a high‐energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase. Endocr Relat Cancer. 2010; 17: 351 – 360.en_US
dc.identifier.citedreferenceClarke SD. Polyunsaturated fatty acid regulation of gene transcription: a molecular mechanism to improve the metabolic syndrome. J Nutr. 2001; 131: 1129 – 1132.en_US
dc.identifier.citedreferenceU.S. Department of Agriculture, Agricultural Research Service. Nutrient intakes from food: mean amounts consumed per individual, by gender and age. In: What We Eat in America. 2010:NHANES 2007–2008. Available at: http://www.ars.usda.gov/ba/bhnre/fsrg.en_US
dc.identifier.citedreferenceRaatz SK, Bibus D, Thomas W, Kris‐Etherton P. Total fat intake modifies plasma fatty acid composition in humans. J Nutr. 2001; 131: 231 – 234.en_US
dc.identifier.citedreferenceRose DP, Connolly JM. Omega‐3 fatty acids as cancer chemopreventive agents. Pharmacol Ther. 1999; 83: 217 – 244.en_US
dc.identifier.citedreferenceGreen CD, Ozguden‐Akkoc CG, Wang Y, Jump DB, Olson LK. Role of fatty acid elongases in determination of de novo synthesized monounsaturated fatty acid species. J Lipid Res. 2010; 51: 1871 – 1877.en_US
dc.identifier.citedreferenceGuillou H, Zadravec D, Martin PG, Jacobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice. Prog Lipid Res. 2010; 49: 186 – 199.en_US
dc.identifier.citedreferenceTikhonenko M, Lydic TA, Wang Y, et al. Remodeling of retinal fatty acids in an animal model of diabetes: a decrease in long‐chain polyunsaturated fatty acids is associated with a decrease in fatty acid elongases Elovl2 and Elovl4. Diabetes. 2010; 59: 219 – 227.en_US
dc.identifier.citedreferenceHansen‐Petrik MB, McEntee MF, Johnson BT, et al. Selective inhibition of delta‐6 desaturase impedes intestinal tumorigenesis. Cancer Lett. 2002; 175: 157 – 163.en_US
dc.identifier.citedreferenceAccioly MT, Pacheco P, Maya‐Monteiro CM, et al. Lipid bodies are reservoirs of cyclooxygenase‐2 and sites of prostaglandin‐E2 synthesis in colon cancer cells. Cancer Res. 2008; 68: 1732 – 1740.en_US
dc.identifier.citedreferenceMangravite LM, Dawson K, Davis RR, Gregg JP, Krauss RM. Fatty acid desaturase regulation in adipose tissue by dietary composition is independent of weight loss and is correlated with the plasma triacylglycerol response. Am J Clin Nutr. 2007; 86: 759 – 767.en_US
dc.identifier.citedreferencePan DA, Hulbert AJ, Storlien LH. Dietary fats, membrane phospholipids and obesity. J Nutr. 1994; 124: 1555 – 1565.en_US
dc.identifier.citedreferenceLands WE, Libelt B, Morris A, et al. Maintenance of lower proportions of (n‐6) eicosanoid precursors in phospholipids of human plasma in response to added dietary (n‐3) fatty acids. Biochim Biophys Acta. 1992; 1180: 147 – 162.en_US
dc.identifier.citedreferenceTu WC, Cook‐Johnson RJ, James MJ, Muhlhausler BS, Gibson RA. Omega‐3 long chain fatty acid synthesis is regulated more by substrate levels than gene expression. Prostaglandins Leukot Essent Fatty Acids. 2010; 83: 61 – 68.en_US
dc.identifier.citedreferenceOuyang P, Jiang Y, Doan HM, et al. Weight loss via exercise with controlled dietary intake may affect phospholipid profile for cancer prevention in murine skin tissues. Cancer Prev Res (Phila). 2010; 3: 466 – 477.en_US
dc.identifier.citedreferenceWang Y, Botolin D, Christian B, Busik J, Xu J, Jump DB. Tissue‐specific, nutritional, and developmental regulation of rat fatty acid elongases. J Lipid Res. 2005; 46: 706 – 715.en_US
dc.identifier.citedreferenceShimamura K, Nagumo A, Miyamoto Y, et al. Discovery and characterization of a novel potent, selective and orally active inhibitor for mammalian ELOVL6. Eur J Pharmacol. 2010; 630: 34 – 41.en_US
dc.identifier.citedreferenceTriggiani M, Oriente A, Marone G. Differential roles for triglyceride and phospholipid pools of arachidonic acid in human lung macrophages. J Immunol. 1994; 152: 1394 – 1403.en_US
dc.identifier.citedreferenceYu W, Bozza PT, Tzizik DM, et al. Co‐compartmentalization of MAP kinases and cytosolic phospholipase A2 at cytoplasmic arachidonate‐rich lipid bodies. Am J Pathol. 1998; 152: 759 – 769.en_US
dc.identifier.citedreferenceMurakami M, Kambe T, Shimbara S, Kudo I. Functional coupling between various phospholipase A2s and cyclooxygenases in immediate and delayed prostanoid biosynthetic pathways. J Biol Chem. 1999; 274: 3103 – 3115.en_US
dc.identifier.citedreferenceSmith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem. 2000; 69: 145 – 182.en_US
dc.identifier.citedreferenceOsterstrom A, Dimberg J, Fransen K, Soderkvist P. Expression of cytosolic and group X secretory phospholipase A(2) genes in human colorectal adenocarcinomas. Cancer Lett. 2002; 182: 175 – 182.en_US
dc.identifier.citedreferenceBrock TG, Peters‐Golden M. Activation and regulation of cellular eicosanoid biosynthesis. Sci World J. 2007; 7: 1273 – 1284.en_US
dc.identifier.citedreferenceDennis EA. Phospholipase A2 in eicosanoid generation. Am J Respir Crit Care Med. 2000; 161: S32 – S35.en_US
dc.identifier.citedreferencePruzanski W, Vadas P, Browning J. Secretory non‐pancreatic group II phospholipase A2: role in physiologic and inflammatory processes. J Lipid Mediat. 1993; 8: 161 – 167.en_US
dc.identifier.citedreferenceFijneman RJ, Cormier RT. The roles of sPLA2‐IIA (Pla2g2a) in cancer of the small and large intestine. Front Biosci. 2008; 13: 4144 – 4174.en_US
dc.identifier.citedreferenceKennedy BP, Soravia C, Moffat J, et al. Overexpression of the nonpancreatic secretory group II PLA2 messenger RNA and protein in colorectal adenomas from familial adenomatous polyposis patients. Cancer Res. 1998; 58: 500 – 503.en_US
dc.identifier.citedreferenceWendum D, Svrcek M, Rigau V, et al. COX‐2, inflammatory secreted PLA2, and cytoplasmic PLA2 protein expression in small bowel adenocarcinomas compared with colorectal adenocarcinomas. Mod Pathol. 2003; 16: 130 – 136.en_US
dc.identifier.citedreferenceLagorce‐Pages C, Paraf F, Wendum D, Martin A, Flejou JF. Expression of inflammatory secretory phospholipase A2 and cytosolic phospholipase A2 in premalignant and malignant Barrett's oesophagus. Virchows Arch. 2004; 444: 426 – 435.en_US
dc.identifier.citedreferenceDimberg J, Samuelsson A, Hugander A, Soderkvist P. Gene expression of cyclooxygenase‐2, group II and cytosolic phospholipase A2 in human colorectal cancer. Anticancer Res. 1998; 18: 3283 – 3287.en_US
dc.identifier.citedreferenceIlsley JN, Nakanishi M, Flynn C, et al. Cytoplasmic phospholipase A2 deletion enhances colon tumorigenesis. Cancer Res. 2005; 65: 2636 – 2643.en_US
dc.identifier.citedreferenceMinami T, Tojo H, Shinomura Y, Matsuzawa Y, Okamoto M. Increased group II phospholipase A2 in colonic mucosa of patients with Crohn's disease and ulcerative colitis. Gut. 1994; 35: 1593 – 1598.en_US
dc.identifier.citedreferenceKuratko CN, Pence BC. Dietary lipid and iron modify normal colonic mucosa without affecting phospholipase A2 activity. Cancer Lett. 1995; 95: 181 – 187.en_US
dc.identifier.citedreferenceRao CV, Simi B, Wynn TT, Garr K, Reddy BS. Modulating effect of amount and types of dietary fat on colonic mucosal phospholipase A2, phosphatidylinositol‐specific phospholipase C activities, and cyclooxygenase metabolite formation during different stages of colon tumor promotion in male F344 rats. Cancer Res. 1996; 56: 532 – 537.en_US
dc.identifier.citedreferenceHendrickse CW, Radley S, Donovan IA, Keighley MR, Neoptolemos JP. Activities of phospholipase A2 and diacylglycerol lipase are increased in human colorectal cancer. Br J Surg. 1995; 82: 475 – 478.en_US
dc.identifier.citedreferenceTribler L, Jensen LT, Jorgensen K, et al. Increased expression and activity of group IIA and X secretory phospholipase A2 in peritumoral versus central colon carcinoma tissue. Anticancer Res. 2007; 27: 3179 – 3185.en_US
dc.identifier.citedreferencePraml C, Amler LC, Dihlmann S, Finke LH, Schlag P, Schwab M. Secretory type II phospholipase A2 (PLA2G2A) expression status in colorectal carcinoma derived cell lines and in normal colonic mucosa. Oncogene. 1998; 17: 2009 – 2012.en_US
dc.identifier.citedreferenceTzotzas T, Filippatos TD, Triantos A, Bruckert E, Tselepis AD, Kiortsis DN. Effects of a low‐calorie diet associated with weight loss on lipoprotein‐associated phospholipase A2 (Lp‐PLA2) activity in healthy obese women. Nutr Metab Cardiovasc Dis. 2008; 18: 477 – 482.en_US
dc.identifier.citedreferencePedersen MW, Koenig W, Christensen JH, Schmidt EB. The effect of marine n‐3 fatty acids in different doses on plasma concentrations of Lp‐PLA2 in healthy adults. Eur J Nutr. 2009; 48: 1 – 5.en_US
dc.identifier.citedreferenceVinson A, Mahaney MC, Diego VP, et al. Genotype‐by‐diet effects on co‐variation in Lp‐PLA2 activity and LDL‐cholesterol concentration in baboons fed an atherogenic diet. J Lipid Res. 2008; 49: 1295 – 1302.en_US
dc.identifier.citedreferenceYang P, Chan D, Felix E, et al. Formation and antiproliferative effect of prostaglandin E(3) from eicosapentaenoic acid in human lung cancer cells. J Lipid Res. 2004; 45: 1030 – 1039.en_US
dc.identifier.citedreferenceVanamala J, Glagolenko A, Yang P, et al. Dietary fish oil and pectin enhance colonocyte apoptosis in part through suppression of PPARdelta/PGE2 and elevation of PGE3. Carcinogenesis. 2008; 29: 790 – 796.en_US
dc.identifier.citedreferencevan Dijk AP, McCafferty DM, Wilson JH, Zijlstra FJ. 15‐Hydroxy‐eicosatetraenoic acid has minor anti‐inflammatory properties in colitis. Agents Actions. 1993; 38 (Suppl 2 ): C120 – C121.en_US
dc.identifier.citedreferenceChen GG, Xu H, Lee JF, et al. 15‐hydroxy‐eicosatetraenoic acid arrests growth of colorectal cancer cells via a peroxisome proliferator‐activated receptor gamma‐dependent pathway. Int J Cancer. 2003; 107: 837 – 843.en_US
dc.identifier.citedreferenceShureiqi I, Wojno KJ, Poore JA, et al. Decreased 13‐S‐hydroxyoctadecadienoic acid levels and 15‐lipoxygenase‐1 expression in human colon cancers. Carcinogenesis. 1999; 20: 1985 – 1995.en_US
dc.identifier.citedreferenceSmith WL, Meade EA, DeWitt DL. Pharmacology of prostaglandin endoperoxide synthase isozymes‐1 and ‐2. Ann N Y Acad Sci. 1994; 714: 136 – 142.en_US
dc.identifier.citedreferenceDeRubertis FR, Craven PA, Saito R. Bile salt stimulation of colonic epithelial proliferation. Evidence for involvement of lipoxygenase products. J Clin Invest. 1984; 74: 1614 – 1624.en_US
dc.identifier.citedreferenceLepage MG, Wargovich M, Smith TJ. Arachidonic acid metabolism in the Min mouse interstine: colon tumor 12‐lipoxygenase and effect of green tea polyphenols. Proc Am Assoc Cancer Res. 2005; 46. Available at: http://aacrmeetingabstracts.org/cgi/content/abstract/2005/1/177‐a. Accessed 10 January 2011.en_US
dc.identifier.citedreferenceBortuzzo C, Hanif R, Kashfi K, Staiano‐Coico L, Shiff SJ, Rigas B. The effect of leukotrienes B and selected HETEs on the proliferation of colon cancer cells. Biochim Biophys Acta. 1996; 1300: 240 – 246.en_US
dc.identifier.citedreferenceShimizu T, Suzuki M, Lee T, Igarashi J, Kaneko K, Yamashiro Y. Effects of n‐3 polyunsaturated fatty acids on indomethacin‐induced changes in eicosanoid production and blood flow in the gastric mucosa of rats. Prostaglandins Leukot Essent Fatty Acids. 2003; 69: 33 – 37.en_US
dc.identifier.citedreferenceKurlandsky LE, Bennink MR, Webb PM, Ulrich PJ, Baer LJ. The absorption and effect of dietary supplementation with omega‐3 fatty acids on serum leukotriene B4 in patients with cystic fibrosis. Pediatr Pulmonol. 1994; 18: 211 – 217.en_US
dc.identifier.citedreferenceHall JA, Van Saun RJ, Wander RC. Dietary (n‐3) fatty acids from menhaden fish oil alter plasma fatty acids and leukotriene B synthesis in healthy horses. J Vet Intern Med. 2004; 18: 871 – 879.en_US
dc.identifier.citedreferenceSurette ME, Koumenis IL, Edens MB, et al. Inhibition of leukotriene biosynthesis by a novel dietary fatty acid formulation in patients with atopic asthma: a randomized, placebo‐controlled, parallel‐group, prospective trial. Clin Ther. 2003; 25: 972 – 979.en_US
dc.identifier.citedreferenceBegum R, Belury MA, Burgess JR, Peck LW. Supplementation with n‐3 and n‐6 polyunsaturated fatty acids: effects on lipoxygenase activity and clinical symptoms of pruritus in hemodialysis patients. J Ren Nutr. 2004; 14: 233 – 241.en_US
dc.identifier.citedreferenceCleland LG, Gibson RA, Neumann MA, Hamazaki T, Akimoto K, James MJ. Dietary (n‐9) eicosatrienoic acid from a cultured fungus inhibits leukotriene B4 synthesis in rats and the effect is modified by dietary linoleic acid. J Nutr. 1996; 126: 1534 – 1540.en_US
dc.identifier.citedreferenceTanabe T, Tohnai N. Cyclooxygenase isozymes and their gene structures and expression. Prostaglandins Other Lipid Mediat. 2002; 68–69: 95 – 114.en_US
dc.identifier.citedreferenceManna C, D'Angelo S, Migliardi V, et al. Protective effect of the phenolic fraction from virgin olive oils against oxidative stress in human cells. J Agric Food Chem. 2002; 50: 6521 – 6526.en_US
dc.identifier.citedreferenceBraga C, La Vecchia C, Franceschi S, et al. Olive oil, other seasoning fats, and the risk of colorectal carcinoma. Cancer. 1998; 82: 448 – 453.en_US
dc.identifier.citedreferencePalozza P, Serini S, Maggiano N, Tringali G, Navarra P, Ranelletti FO, Calviello G. β‐Carotene downregulates the steady‐state and heregulin‐alpha‐induced COX‐2 pathways in colon cancer cells. J Nutr. 2005; 135: 129 – 136.en_US
dc.identifier.citedreferenceManna C, Galletti P, Cucciolla V, Montedoro G, Zappia V. Olive oil hydroxytyrosol protects human erythrocytes against oxidative damages. J Nutr Biochem. 1999; 10: 159 – 165.en_US
dc.identifier.citedreferenceOwen RW, Mier W, Giacosa A, Hull WE, Spiegelhalder B, Bartsch H. Phenolic compounds and squalene in olive oils: the concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignans and squalene. Food Chem Toxicol. 2000; 38: 647 – 659.en_US
dc.identifier.citedreferenceVisioli F, Galli C. Biological properties of olive oil phytochemicals. Crit Rev Food Sci Nutr. 2002; 42: 209 – 221.en_US
dc.identifier.citedreferenceMenendez JA, Vellon L, Lupu R. Targeting fatty acid synthase‐driven lipid rafts: a novel strategy to overcome trastuzumab resistance in breast cancer cells. Med Hypotheses. 2005; 64: 997 – 1001.en_US
dc.identifier.citedreferenceVadlamudi R, Mandal M, Adam L, Steinbach G, Mendelsohn J, Kumar R. Regulation of cyclooxygenase‐2 pathway by HER2 receptor. Oncogene. 1999; 18: 305 – 314.en_US
dc.identifier.citedreferenceHalf E, Broaddus R, Danenberg KD, Danenberg PV, Ayers GD, Sinicrope FA. HER‐2 receptor expression, localization, and activation in colorectal cancer cell lines and human tumors. Int J Cancer. 2004; 108: 540 – 548.en_US
dc.identifier.citedreferencede la Puerta R, Ruiz Gutierrez V, Hoult JR. Inhibition of leukocyte 5‐lipoxygenase by phenolics from virgin olive oil. Biochem Pharmacol. 1999; 57: 445 – 449.en_US
dc.identifier.citedreferencePetroni A, Blasevich M, Papini N, Salami M, Sala A, Galli C. Inhibition of leukocyte leukotriene B4 production by an olive oil‐derived phenol identified by mass‐spectrometry. Thromb Res. 1997; 87: 315 – 322.en_US
dc.identifier.citedreferenceBogani P, Galli C, Villa M, Visioli F. Postprandial anti‐inflammatory and antioxidant effects of extra virgin olive oil. Atherosclerosis. 2007; 190: 181 – 186.en_US
dc.identifier.citedreferenceHegazi RA, Saad RS, Mady H, Matarese LE, O'Keefe S, Kandil HM. Dietary fatty acids modulate chronic colitis, colitis‐associated colon neoplasia and COX‐2 expression in IL‐10 knockout mice. Nutrition. 2006; 22: 275 – 282.en_US
dc.identifier.citedreferenceBeauchamp GK, Keast RS, Morel D, et al. Phytochemistry: ibuprofen‐like activity in extra‐virgin olive oil. Nature. 2005; 437: 45 – 46.en_US
dc.identifier.citedreferenceMurakami M, Kudo I. Prostaglandin E synthase: a novel drug target for inflammation and cancer. Curr Pharm Des. 2006; 12: 943 – 954.en_US
dc.identifier.citedreferenceSchade S, Bezugla Y, Kolada A, Kamionka S, Scheibe R, Dieter P. Diverse functional coupling of cyclooxygenase 1 and 2 with final prostanoid synthases in liver macrophages. Biochem Pharmacol. 2002; 64: 1227 – 1232.en_US
dc.identifier.citedreferenceSt‐Onge M, Flamand N, Biarc J, et al. Characterization of prostaglandin E2 generation through the cyclooxygenase (COX)‐2 pathway in human neutrophils. Biochim Biophys Acta. 2007; 1771: 1235 – 1245.en_US
dc.identifier.citedreferenceNakanishi M, Montrose DC, Clark P, et al. Genetic deletion of mPGES‐1 suppresses intestinal tumorigenesis. Cancer Res. 2008; 68: 3251 – 3259.en_US
dc.identifier.citedreferenceElander N, Ungerback J, Olsson H, Uematsu S, Akira S, Soderkvist P. Genetic deletion of mPGES‐1 accelerates intestinal tumorigenesis in APC(Min/+) mice. Biochem Biophys Res Commun. 2008; 372: 249 – 253. Epub 2008 May 15.en_US
dc.identifier.citedreferenceSubbaramaiah K, Yoshimatsu K, Scherl E, et al. Microsomal prostaglandin E synthase‐1 is overexpressed in inflammatory bowel disease. Evidence for involvement of the transcription factor Egr‐1. J Biol Chem. 2004; 279: 12647 – 12658.en_US
dc.identifier.citedreferenceYoshimatsu K, Golijanin D, Paty PB, et al. Inducible microsomal prostaglandin E synthase is overexpressed in colorectal adenomas and cancer. Clin Cancer Res. 2001; 7: 3971 – 3976.en_US
dc.identifier.citedreferenceSanchez‐Fidalgo S, Cardeno A, Villegas I, Talero E, de la Lastra CA. Dietary supplementation of resveratrol attenuates chronic colonic inflammation in mice. Eur J Pharmacol. 2010; 633: 78 – 84.en_US
dc.identifier.citedreferencePoole EM, Hsu L, Xiao L, et al. Genetic variation in prostaglandin E2 synthesis and signaling, prostaglandin dehydrogenase, and the risk of colorectal adenoma. Cancer Epidemiol Biomarkers Prev. 2010; 19: 547 – 557.en_US
dc.identifier.citedreferencePaniagua JA, de la Sacristana AG, Sanchez E, et al. A MUFA‐rich diet improves postprandial glucose, lipid and GLP‐1 responses in insulin‐resistant subjects. J Am Coll Nutr. 2007; 26: 434 – 444.en_US
dc.identifier.citedreferenceVessby B, Uusitupa M, Hermansen K, et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: the KANWU Study. Diabetologia. 2001; 44: 312 – 319.en_US
dc.identifier.citedreferencede Lorgeril M, Salen P, Martin JL, Monjaud I, Boucher P, Mamelle N. Mediterranean dietary pattern in a randomized trial: prolonged survival and possible reduced cancer rate. Arch Intern Med. 1998; 158: 1181 – 1187.en_US
dc.identifier.citedreferenceLairon D. Intervention studies on Mediterranean diet and cardiovascular risk. Mol Nutr Food Res. 2007; 51: 1209 – 1214.en_US
dc.identifier.citedreferenceEstruch R, Martinez‐Gonzalez MA, Corella D, et al. Effects of a Mediterranean‐style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med. 2006; 145: 1 – 11.en_US
dc.identifier.citedreferenceSalas‐Salvado J, Bullo M, Babio N, et al. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED‐Reus nutrition intervention randomized trial. Diabetes Care. 2010; 34: 14 – 19.en_US
dc.identifier.citedreferenceDjuric Z, Ren J, Blythe J, VanLoon G, Sen A. A Mediterranean dietary intervention in healthy American women changes plasma carotenoids and fatty acids in distinct clusters. Nutr Res. 2009; 29: 156 – 163.en_US
dc.identifier.citedreferenceDjuric Z, Vanloon G, Radakovich K, Dilaura NM, Heilbrun LK, Sen A. Design of a Mediterranean exchange list diet implemented by telephone counseling. J Am Diet Assoc. 2008; 108: 2059 – 2065.en_US
dc.identifier.citedreferenceVincent‐Baudry S, Defoort C, Gerber M, et al. The Medi‐RIVAGE study: reduction of cardiovascular disease risk factors after a 3‐mo intervention with a Mediterranean‐type diet or a low‐fat diet. Am J Clin Nutr. 2005; 82: 964 – 971.en_US
dc.identifier.citedreferenceField CJ, Angel A, Clandinin MT. Relationship of diet to the fatty acid composition of human adipose tissue structural and stored lipids. Am J Clin Nutr. 1985; 42: 1206 – 1220.en_US
dc.identifier.citedreferenceDue A, Larsen TM, Mu H, Hermansen K, Stender S, Astrup A. Comparison of 3 ad libitum diets for weight‐loss maintenance, risk of cardiovascular disease, and diabetes: a 6‐mo randomized, controlled trial. Am J Clin Nutr. 2008; 88: 1232 – 1241.en_US
dc.identifier.citedreferenceMcMurchie EJ, Margetts BM, Beilin LJ, Croft KD, Vandongen R, Armstrong BK. Dietary‐induced changes in the fatty acid composition of human cheek cell phospholipids: correlation with changes in the dietary polyunsaturated/saturated fat ratio. Am J Clin Nutr. 1984; 39: 975 – 980.en_US
dc.identifier.citedreferenceBagga D, Capone S, Wang HJ, et al. Dietary modulation of omega‐3/omega‐6 polyunsaturated fatty acid ratios in patients with breast cancer. J Natl Cancer Inst. 1997; 89: 1123 – 1131.en_US
dc.identifier.citedreferenceHillier K, Jewell R, Dorrell L, Smith CL. Incorporation of fatty acids from fish oil and olive oil into colonic mucosal lipids and effects upon eicosanoid synthesis in inflammatory bowel disease. Gut. 1991; 32: 1151 – 1155.en_US
dc.identifier.citedreferenceBuhner S, Nagel E, Korber J, Vogelsang H, Linn T, Pichlmayr R. Ileal and colonic fatty acid profiles in patients with active Crohn's disease. Gut. 1994; 35: 1424 – 1428.en_US
dc.identifier.citedreferenceNishida T, Miwa H, Shigematsu A, Yamamoto M, Iida M, Fujishima M. Increased arachidonic acid composition of phospholipids in colonic mucosa from patients with active ulcerative colitis. Gut. 1987; 28: 1002 – 1007.en_US
dc.identifier.citedreferencePacheco S, Hillier K, Smith C. Increased arachidonic acid levels in phospholipids of human colonic mucosa in inflammatory bowel disease. Clin Sci (Lond). 1987; 73: 361 – 364.en_US
dc.identifier.citedreferenceShim YJ, Choi KY, Lee WC, Kim MK, Lee SY, Lee‐Kim YC. Phospholipid fatty acid patterns in the mucosa of human colorectal adenomas and carcinomas. Nutr Res. 2005; 25: 261 – 269.en_US
dc.identifier.citedreferenceFernandez‐Banares F, Esteve M, Navarro E, et al. Changes of the mucosal n3 and n6 fatty acid status occur early in the colorectal adenoma‐carcinoma sequence. Gut. 1996; 38: 254 – 259.en_US
dc.identifier.citedreferenceSzachowicz‐Petelska B, Sulkowski S, Figaszewski ZA. Altered membrane free unsaturated fatty acid composition in human colorectal cancer tissue. Mol Cell Biochem. 2007; 294: 237 – 242.en_US
dc.identifier.citedreferenceDrew JE, Padidar S, Horgan G, et al. Salicylate modulates oxidative stress in the rat colon: a proteomic approach. Biochem Pharmacol. 2006; 72: 204 – 216.en_US
dc.identifier.citedreferenceMurugan RS, Mohan KV, Uchida K, Hara Y, Prathiba D, Nagini S. Modulatory effects of black tea polyphenols on oxidant‐antioxidant profile and expression of proliferation, apoptosis, and angiogenesis‐associated proteins in the rat forestomach carcinogenesis model. J Gastroenterol. 2007; 42: 352 – 361.en_US
dc.identifier.citedreferenceFuchs D, Vafeiadou K, Hall WL, et al. Proteomic biomarkers of peripheral blood mononuclear cells obtained from postmenopausal women undergoing an intervention with soy isoflavones. Am J Clin Nutr. 2007; 86: 1369 – 1375.en_US
dc.identifier.citedreferenceDelage B, Bairras C, Buaud B, Pallet V, Cassand P. A high‐fat diet generates alterations in nuclear receptor expression: prevention by vitamin A and links with cyclooxygenase‐2 and beta‐catenin. Int J Cancer. 2005; 116: 839 – 846.en_US
dc.identifier.citedreferenceDelage B, Rullier A, Capdepont M, Rullier E, Cassand P. The effect of body weight on altered expression of nuclear receptors and cyclooxygenase‐2 in human colorectal cancers. Nutr J. 2007; 6: 20.en_US
dc.identifier.citedreferenceTabibiazar R, Wagner RA, Deng A, Tsao PS, Quertermous T. Proteomic profiles of serum inflammatory markers accurately predict atherosclerosis in mice. Physiol Genomics. 2006; 25: 194 – 202.en_US
dc.identifier.citedreferenceHabermann JK, Paulsen U, Roblick UJ, et al. Stage‐specific alterations of the genome, transcriptome, and proteome during colorectal carcinogenesis. Genes Chromosomes Cancer. 2007; 46: 10 – 26.en_US
dc.identifier.citedreferenceRho JH, Qin S, Wang JY, Roehrl MH. Proteomic expression analysis of surgical human colorectal cancer tissues: up‐regulation of PSB7, PRDX1, and SRP9 and hypoxic adaptation in cancer. J Proteome Res. 2008; 7: 2959 – 2972.en_US
dc.identifier.citedreferenceHsieh SY, Shih TC, Yeh CY, Lin CJ, Chou YY, Lee YS. Comparative proteomic studies on the pathogenesis of human ulcerative colitis. Proteomics. 2006; 6: 5322 – 5331.en_US
dc.identifier.citedreferenceAlrawi SJ, Schiff M, Carroll RE, et al. Aberrant crypt foci. Anticancer Res. 2006; 26: 107 – 119.en_US
dc.identifier.citedreferenceWada M, DeLong CJ, Hong YH, et al. Enzymes and receptors of prostaglandin pathways with arachidonic acid‐derived versus eicosapentaenoic acid‐derived substrates and products. J Biol Chem. 2007; 282: 22254 – 22266.en_US
dc.identifier.citedreferenceEvans JF, Nathaniel DJ, Zamboni RJ, Ford‐Hutchinson AW. Leukotriene A3. A poor substrate but a potent inhibitor of rat and human neutrophil leukotriene A4 hydrolase. J Biol Chem. 1985; 260: 10966 – 10970.en_US
dc.identifier.citedreferenceJames MJ, Gibson RA, Neumann MA, Cleland LG. Effect of dietary supplementation with n‐9 eicosatrienoic acid on leukotriene B4 synthesis in rats: a novel approach to inhibition of eicosanoid synthesis. J Exp Med. 1993; 178: 2261 – 2265.en_US
dc.identifier.citedreferenceUrquiaga I, Guasch V, Marshall G, et al. Effect of Mediterranean and Occidental diets, and red wine, on plasma fatty acids in humans. An intervention study. Biol Res. 2004; 37: 253 – 261.en_US
dc.identifier.citedreferenceZazpe I, Sanchez‐Tainta A, Estruch R, et al. A large randomized individual and group intervention conducted by registered dietitians increased adherence to Mediterranean‐type diets: the PREDIMED study. J Am Diet Assoc. 2008; 108: 1134 – 1144; discussion 1145.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.