Show simple item record

Direct numerical simulation of transition in MHD duct flow

dc.contributor.authorKrasnov, Dmitryen_US
dc.contributor.authorZikanov, Olegen_US
dc.contributor.authorThess, Andréen_US
dc.contributor.authorBoeck, Thomasen_US
dc.date.accessioned2012-01-05T22:05:37Z
dc.date.available2013-02-01T20:26:12Zen_US
dc.date.issued2011-12en_US
dc.identifier.citationKrasnov, Dmitry; Zikanov, Oleg; Thess, André ; Boeck, Thomas (2011). "Direct numerical simulation of transition in MHD duct flow." PAMM 11(1): 659-660. <http://hdl.handle.net/2027.42/89488>en_US
dc.identifier.issn1617-7061en_US
dc.identifier.issn1617-7061en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/89488
dc.description.abstractTransition in the flow of electrically conducting fluid in a square duct with insulating walls is studied by direct numerical simulations. A uniform magnetic field is applied in the transverse direction. Moderate values of the Reynolds ( Re = 5000 ) and Hartmann ( Ha = 0 … 30 ) numbers are considered that correspond to the classical Hartmann & Lazarus [1] experiments. It is shown that the laminarization begins in the Hartmann layers, whereas the sidewall layers remain turbulent. Complete re‐laminarization occurs in the range of R = Re / Ha ≈︁ 220 , which is in agreement with the H. & L. experiments. (© 2011 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.titleDirect numerical simulation of transition in MHD duct flowen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMechanical Engineering, University of Michigan ‐ Dearborn, USAen_US
dc.contributor.affiliationotherInstitute of Thermodynamics and Fluid Mechanics, Ilmenau University of Technology, 98684 Ilmenau, Germanyen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/89488/1/659_ftp.pdf
dc.identifier.doi10.1002/pamm.201110319en_US
dc.identifier.sourcePAMMen_US
dc.identifier.citedreferenceJ. Hartmann and F. Lazarus, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 15(7), 1–45 (1937).en_US
dc.identifier.citedreferenceD. Krasnov, O. Zikanov, M. Rossi, and T. Boeck, J. Fluid Mech. 653, 273–299 (2010).en_US
dc.identifier.citedreferenceV. Shatrov and G. Gerbeth, Phys. Fluids 22, 084101 (2010).en_US
dc.identifier.citedreferenceP. H. Roberts, An introduction to Magnetohydrodynamics (Longmans, Green, New York, 1967).en_US
dc.identifier.citedreferenceY. Morinishi, T. S. Lund, O. V. Vasilyev, and P. Moin, J. Comp. Phys. 143, 90–124 (1998).en_US
dc.identifier.citedreferenceM. J. Ni, R. Munipalli, P. Huang, N. B. Morley, and M. A. Abdou, J. Comp. Phys. 227, 174–204 (2007).en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.