Show simple item record

The effects of lithospheric thickness and density structure on Earth's stress field

dc.contributor.authorNaliboff, John Benjaminen_US
dc.contributor.authorLithgow‐bertelloni, C.en_US
dc.contributor.authorRuff, Larry J.en_US
dc.contributor.authorde Koker, Nico Pieter Janen_US
dc.date.accessioned2012-01-05T22:07:39Z
dc.date.available2013-03-04T15:29:55Zen_US
dc.date.issued2012-01en_US
dc.identifier.citationNaliboff, J.B.; Lithgow‐bertelloni, C. ; Ruff, L.J.; de Koker, N. (2012). "The effects of lithospheric thickness and density structure on Earth's stress field." Geophysical Journal International 188(1). <http://hdl.handle.net/2027.42/89572>en_US
dc.identifier.issn0956-540Xen_US
dc.identifier.issn1365-246Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/89572
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherComposition of the Mantleen_US
dc.subject.otherDynamics of Lithosphere and Mantleen_US
dc.subject.otherDynamics: Gravity and Tectonicsen_US
dc.subject.otherMechanics, Theory, and Modellingen_US
dc.subject.otherRheology: Crust and Lithosphereen_US
dc.subject.otherRheology: Mantleen_US
dc.titleThe effects of lithospheric thickness and density structure on Earth's stress fielden_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Geological Sciences, University of Michigan, MI, USA. E‐mail: jbnaliboff@ucdavis.eduen_US
dc.contributor.affiliationotherDepartment of Earth Sciences, University College London, London, UKen_US
dc.contributor.affiliationotherBayerisches Geoinstitute, University of Bayreuth, Bayreuth, Germanyen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/89572/1/j.1365-246X.2011.05248.x.pdf
dc.identifier.doi10.1111/j.1365-246X.2011.05248.xen_US
dc.identifier.sourceGeophysical Journal Internationalen_US
dc.identifier.citedreferenceABAQUS/Standard, 2010. Abaqus Theory and Analysis Manual Version 6.10, Dassault Systémes, Providence, RI, USA.en_US
dc.identifier.citedreferenceArtemieva, I.M., 2006. Global 1 degrees x 1 degrees thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution, Tectonophysics, 416, 245 – 277.en_US
dc.identifier.citedreferenceArtemieva, I.M. & Mooney, W.D., 2001. Thermal thickness and evolution of Precambrian lithosphere: a global study, J. geophys. Res., 106 ( B8 ), 16 837–16 414, doi: 10.1029/2000JB900439.en_US
dc.identifier.citedreferenceArtyushkov, E.V., 1973. Stresses in the lithosphere caused by crustal thickness inhomogeneities, J. geophys. Res., 78 ( 32 ), 7675 – 7708, doi: 10.1029/JB078i032p07675.en_US
dc.identifier.citedreferenceAsimow, P.D., Hirschmann, M.M., Ghiorso, M.S., O’Hara, M.J. & Stolper, E.M., 1995. The effect of pressure‐induced solid‐solid phase‐transitions on decompression melting of the mantle, Geochim. Cosmochim. Acta, 59 ( 21 ), 4489 – 4506.en_US
dc.identifier.citedreferenceBassin, C., Laske, G. & Masters, G., 2000. The current limits of resolution for surface wave tomography in North America, EOS, Trans. Am. geophys. Un., 81 ( 48 ), Fall Meeting Suppl., Abstract S12A‐03.en_US
dc.identifier.citedreferenceBeaumont, C., Jamieson, R.A., Nguyen, M.H. & Medvedev, S., 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan‐Tibetan orogen, J. geophys. Res., 109, B06406, doi: 10.1029/2003JB002809.en_US
dc.identifier.citedreferenceBechtel, T.D., Forsyth, D.W., Sharpotn, V.L. & Grieve, R.A.F., 1990. Variations in effective elastic thickness of the North American lithosphere, Nature, 343, 636 – 638.en_US
dc.identifier.citedreferenceBird, P., 1989. New finite element techniques for modeling deformation histories of continents with stratified temperature‐dependent rheology, J. geophys. Res., 94 ( B4 ), 3967 – 3990.en_US
dc.identifier.citedreferenceBott, M.H.P. & Kusznir, N.J., 1979. Stress distributions associated with compensated plateau uplift structures with application to the continental splitting mechanism, Geophys. J. R. astr. Soc., 56, 451 – 459.en_US
dc.identifier.citedreferenceBurgmann, R. & Dresen, G., 2008. Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy and field observations, Annu. Rev. Earth planet. Sci., 36, 531 – 567.en_US
dc.identifier.citedreferenceBurov, E.B., 2010, The equivalent elastic thickness (T(e)), seismicity and the long‐term rheology of continental lithosphere: Time to burn‐out “creme brulee”? Insights from large‐scale geodynamic modeling, Tectonophysics, 484 ( 1–4 ), 4 – 26.en_US
dc.identifier.citedreferenceBurov, E.B. & Watts, A.B., 2006. The long‐term strength of continental lithosphere: “jelly sandwich” or “creme brulee”?, GSA Today, 16 ( 1 ), 4 – 10.en_US
dc.identifier.citedreferenceClark, M. K. & Royden, L.H., 2000. Topographic ooze: building the eastern margin of Tibet by lower crustal flow, Geology, 28, 703 – 706.en_US
dc.identifier.citedreferenceCoblentz, D.D., Richardson, R.M. & Sandiford, M., 1994. On the gravitational potential of the Earth's lithosphere, Tectonics, 13 ( 4 ), 929 – 945.en_US
dc.identifier.citedreferenceConrad, C.P. & Lithgow‐Bertelloni, C., 2006. Influence of continental roots and asthenosphere on plate‐mantle coupling, Geophys. Res. Lett., 33, L05312, doi: 10.1029/2005GL025621.en_US
dc.identifier.citedreferenceConrad, C.P., Lithgow‐Bertelloni, C. & Louden, K.E. 2004. Iceland, the Farallon slab, and dynamic topography of the North Atlantic, Geology, 32, 177 – 180.en_US
dc.identifier.citedreferenceCooper, C.M. & Conrad, C.P., 2009. Does the mantle control the maximum thickness of cratons? Lithosphere, 1 ( 2 ), 67 – 72.en_US
dc.identifier.citedreferenceDahlen, F.A., 1981. Isostasy and the ambient state of stress in the oceanic lithosphere, J. geophys. Res., 86, 7801 – 7807.en_US
dc.identifier.citedreferenceDe Koker, N.P., Lithgow‐Bertelloni, C. & Stixrude, L., 2005. Dynamic topography and the density structure of the mantle lithosphere, EOS, Trans. Am. geophys. Un., 86 ( 52 ), Fall Meet. Suppl., Abstract T23A ‐ 0524.en_US
dc.identifier.citedreferenceEngland, P. & Houseman, G., 1986. Finite strain calculations of continental deformation 2. Comparison with the India‐Asia collision zone, J. geophys. Res., 91 ( B3 ), 3664 – 3676.en_US
dc.identifier.citedreferenceEngland, P. & Houseman, G., 1988. The mechanics of the Tibetan plateau, Phil. Trans. R. Soc. Lond., 326 ( 1589 ), 301 – 319.en_US
dc.identifier.citedreferenceEngland, P. & Houseman, G., 1989. Extension during continental convergence, with application to the Tibetan Plateau, J. geophys. Res., 94 ( B12 ), 17 561–17 579.en_US
dc.identifier.citedreferenceEngland, P. & McKenzie, D., 1982. A thin viscous sheet model for continental deformation, Geophys. J. R. astr. Soc., 70 ( 2 ), 295 – 321.en_US
dc.identifier.citedreferenceEngland, P. & McKenzie, D., 1983. Correction to: a thin viscous sheet model for continental deformation, Geophys. J. R. astr. Soc., 73, 523 – 532.en_US
dc.identifier.citedreferenceEngland, P. & Molnar, P., 1997. Active deformation of Asia: from kinematics to dynamics, Science, 278, 647 – 650.en_US
dc.identifier.citedreferenceFleitout, L. & Froidevaux, C., 1982. Tectonics and topography for a lithosphere containing density heterogeneities, Tectonics, 1 ( 1 ), 21 – 56.en_US
dc.identifier.citedreferenceFleitout, L. & Froidevaux, C., 1983. Tectonic stresses in the lithosphere, Tectonics, 2 ( 3 ), 315 – 324.en_US
dc.identifier.citedreferenceFlesch, L.M., Holt, W.E., Haines, A.J. & Shen‐Tu, B., 2000. Dynamics of the Pacific‐North American plate boundary in the western United States, Science, 287, 834 – 836.en_US
dc.identifier.citedreferenceFlesch, L.M., Haines, A.J. & Holt, W.E., 2001. Dynamics of the India‐Eurasia collision zone, J. geophys. Res., 106 ( B8 ), 16 435–16 460.en_US
dc.identifier.citedreferenceFlesch, L.M., Holt, W.E., Haines, A.J., Wen, L.X. & Shen‐Tu, B., 2007. The dynamics of western North America: stress magnitudes and the relative role of gravitational potential energy, plate interaction at the boundary and basal tractions, Geophys. J. Int., 169, 866 – 896.en_US
dc.identifier.citedreferenceGhosh, A., Holt, W.E., Flesch, L.M. & Haines, A.J., 2006. Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate, Geology, 34 ( 5 ), 321 – 324.en_US
dc.identifier.citedreferenceGhosh, A., Holt, W.E., Wen, L., Haines, A.J. & Flesch, L.M., 2008. Joint modeling of lithosphere and mantle dynamics elucidating lithosphere‐mantle coupling, Geophys. Res. Lett., 35 ( L16309 ), doi: 10.1029/2008GL034365.en_US
dc.identifier.citedreferenceGhosh, A., Holt, W.E., Flesch, L.M. & Haines, A.J., 2009. Contribution of gravitational potential energy differences to the global stress field, Geophys. J. Int., 179, 787 – 812.en_US
dc.identifier.citedreferenceGung, Y.C., Panning, M. & Romanowicz, B., 2003. Global anisotropy and the thickness of continents, Nature, 422, 707 – 711.en_US
dc.identifier.citedreferenceHager, B.H, Clayton, R.W., Richards, M.A., Comer, R.P. & Dziewonski, A.M., 1985. Lower mantle heterogeneity, dynamic topography and the geoid, Nature, 313, 541 – 545.en_US
dc.identifier.citedreferenceHartz, E.H. & Podladchikov, Y.Y., 2008. Toasting the jelly sandwich: the effect of shear heating on lithospheric geotherms and strength, Geology, 36 ( 4 ), 331 – 334.en_US
dc.identifier.citedreferenceHomburg, J.M., Hirth, G. & Kelemen, P. B., 2010. Investigation of the strength contrast at the Moho: a case study from the Oman Ophiolite, Geology, 38 ( 8 ), 679 – 682.en_US
dc.identifier.citedreferenceHouseman, G. & England, P., 1993. Crustal thickening versus lateral expulsion in the Indian‐Asian Continental Collision, J. geophys. Res., 98 ( B7 ), 12 233–12 249.en_US
dc.identifier.citedreferenceHumphreys, E.D. & Coblentz, D.D., 2007. North American dynamics and Western US Tectonics, Rev. Geophys., 45, RG3001, doi: 10.1029/2005RG000181.en_US
dc.identifier.citedreferenceJackson, J., 2002. Strength of the continental lithosphere: time to abandon the jelly sandwich?, GSA Today, 12 ( 9 ), 4 – 10.en_US
dc.identifier.citedreferenceJaupart, C. & Mareschal, J.C., 1999. The thermal structure and thickness of continental roots, Lithos, 48, 93 – 114.en_US
dc.identifier.citedreferenceJeffreys, H., 1984. Cartesian Tensors, 7th edn, Cambridge University Press, Cambridge, 98pp.en_US
dc.identifier.citedreferenceJones, C.H., Unruh, J.R. & Sonder, L.J., 1996. The role of gravitational potential energy in active deformation in the southwestern United States, Nature, 381, 37 – 41.en_US
dc.identifier.citedreferenceJones, C.H., Sonder, L.J. & Unruh, J.R., 1998. Lithospheric gravitational potential energy and past orogenesis: implications for conditions of initial Basin and Range and Laramide deformations, Geology, 26 ( 7 ), 639 – 642.en_US
dc.identifier.citedreferenceJordan, T.H., 1975. The continental tectosphere, Rev. Geophys., 13 ( 3 ), 1 – 12.en_US
dc.identifier.citedreferenceKaban, M.K., Schwintzer, P., Artemieva, M. & Mooney, W.D., 2003. Density of the continental roots: compositional and thermal contributions, Earth planet. Sci. Lett., 209 ( 1–2 ), 53 – 69.en_US
dc.identifier.citedreferenceKlein, E. & Langmuir, C., 1987. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness, J. geophys. Res., 92 ( B8 ), 8089 – 8115.en_US
dc.identifier.citedreferenceKlein, E.C., Flesch, L.M., Holt, W.E. & Haines, A.J., 2009. Evidence of long‐term weakness on seismogenic faults in western North America from dynamic modeling, J. geophys. Res., 114, B03402, doi: 10.1029/2007JB005201.en_US
dc.identifier.citedreferenceKohlstedt, D.L., Evans, B. & Mackwell, D.J., 1995. Strength of the lithosphere – constraints imposed by laboratory experiments, J. geophys. Res., 100 ( B9 ), 17 587–17 602.en_US
dc.identifier.citedreferenceKusznir, N.J. & Bott, M.H.P., 1977. Stress concentrations in the upper lithosphere caused by underlying visco‐ elastic creep, Tectonophysics, 43, 247 – 256.en_US
dc.identifier.citedreferenceLevander, A., Niu, F. & Miller, M.S., 2008. The Moho and the Lithosphere‐Asthenosphere Boundary under the western U.S. from USArray PdS Receiver Functions, EOS, Trans. Am. geophys. Un., 89 ( 53 ), Fall Meet. Suppl., Abstract S31D ‐ 05.en_US
dc.identifier.citedreferenceLi, X., Yuan, X. & Kind, R., 2007. The lithosphere‐asthenosphere boundary beneath the western United States, Geophys. J. Int., 170 ( 2 ), 700 – 710.en_US
dc.identifier.citedreferenceLithgow‐Bertelloni, C. & Guynn, J.H., 2004. Origin of the lithospheric stress field, J. geophys. Res., 109, B01408, doi: 10.1029/2003JB002467.en_US
dc.identifier.citedreferenceLithgow‐Bertelloni, C. & Silver, P.G., 1998. Dynamic topography, plate driving forces and the African superswell, Nature, 395, 269 – 272.en_US
dc.identifier.citedreferenceLiu, M. & Yang, Y., 2003. Extensional collapse of the Tibetan Plateau: Results of three‐dimensional finite element modeling, J. geophys. Res., 108 ( B8 ), 2361, doi: 10.1029/2002JB002248.en_US
dc.identifier.citedreferenceLiu, M., Shen, Y. & Yang, Y., 2000. Gravitational collapse of orogenic crust: a preliminary three‐ dimensional finite element study, J. geophys. Res., 105 ( B2 ), 3159 – 3173.en_US
dc.identifier.citedreferenceLowry, A.R. & Smith, R.B., 1995. Strength and rheology of the western U.S. Cordillera, J. geophys. Res., 100 ( B9 ), 17 947–17 963.en_US
dc.identifier.citedreferenceLowry, A.R., Ribe, N.M. & Smith, R.B., 2000. Dynamic elevation of the Cordillera, western United States, J. geophys. Res., 105 ( B10 ), 23 371–23 390.en_US
dc.identifier.citedreferenceMancktelow, N.S., 2008. Tectonic pressure: theoretical concepts and modelled examples, Lithos, 103, 149 – 177.en_US
dc.identifier.citedreferenceMasters, G. & Gubbins, D., 2003. On the resolution of density within the earth, Phys. Earth planet. Inter., 140, 159 – 167.en_US
dc.identifier.citedreferenceMedvedev, S.E. & Podladchikov, Y., 1999. New extended thin‐sheet approximation for geodynamic applications—I. Model formulation, Geophys. J. Int., 136, 567 – 585.en_US
dc.identifier.citedreferenceMichaut, C. & Jaupart, C., 2004. Nonequilibrium temperatures and cooling rates in thick continental lithosphere, Geophys. Res. Lett., 31, L24602, doi: 10.1029/2004GL021092.en_US
dc.identifier.citedreferenceMolnar, P. & Lyon‐Caen, H., 1988. Some simple physical aspects of the support, structure, and evolution of mountain belts, Geol. Soc. Am., Spec. Paper., 218, 179 – 207.en_US
dc.identifier.citedreferenceMolnar, P. & Tapponier, P., 1978. Active tectonics of Tibet, J. geophys. Res., 83 ( B11 ), 5361 – 5376.en_US
dc.identifier.citedreferenceMolnar, P., England, P. & Martinod, J., 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon, Rev. Geophys., 31 ( 4 ), 357 – 396.en_US
dc.identifier.citedreferenceMuller, R.D., Roest, W.R., Royer, J.‐Y., Gahagan, L.M. & Sclater, J.G., 1997. Digital isochrons of the world's ocean floor, J. geophys. Res., 102 ( B2 ), 3211 – 3214.en_US
dc.identifier.citedreferenceNaliboff, J. B., 2010, Dependence of the stress field on plate‐mantle coupling and lithospheric structure, PhD thesis, Univ. Michigan, Ann Arbor, MI.en_US
dc.identifier.citedreferenceNaliboff, J.B., Conrad, C. P. & Lithgow‐Bertelloni, C., 2009. Modification of the lithospheric stress field by lateral variations in plate‐mantle coupling, Geophys. Res. Lett., 36, L22307, doi: 10.1029/2009GL040484.en_US
dc.identifier.citedreferencePascal, C., 2006. On the role of heat flow, lithosphere thickness and lithosphere density on gravitational potential stresses, Tectonophysics, 425 ( 1–4 ), 83 – 99.en_US
dc.identifier.citedreferencePollack, H. & Chapman, D., 1977. On the regional variation of heat flow, geotherms, and lithospheric thickness, Tectonophysics, 38, 279 – 296.en_US
dc.identifier.citedreferencePysklywec, R.N, Beaumont, C. & Fullsack, P., 2002. Lithospheric deformation during the early stages of continental collision: numerical experiments and comparison with South Island, New Zealand, J. geophys. Res., 107 ( B7 ), 2133, doi: 10.1029/2001JB000252.en_US
dc.identifier.citedreferenceRegenauer‐Lieb, K., Weinberg, R.F. & Rosenbaum, G., 2006. The effect of energy feedbacks on continental strength, Nature, 442, 67 – 70.en_US
dc.identifier.citedreferenceRichardson, R.M., 1992. Ridge forces, absolute plate motions, and the intraplate stress field, J. geophys. Res., 97 ( B8 ), 11 739–11 748.en_US
dc.identifier.citedreferenceRichardson, R.M. & Redding, L.M., 1991. North‐American plate dynamics, J. geophys. Res., 96 ( B7 ), 12 201–12 223.en_US
dc.identifier.citedreferenceRichardson, R.M., Solomon, S.C. & Sleep, N.H., 1978. Tectonic stress in the plates, Rev. Geophys., 17 ( 5 ), 981 – 1019.en_US
dc.identifier.citedreferenceRoyden, L.H., Burchfiel, B., King, R.W., Wang, E., Chen, Z., Shen, F. & Liu, Y., 1997. Surface deformation and lower crustal flow in Eastern Tibet, Science, 276, 788 – 790.en_US
dc.identifier.citedreferenceRudnick, R.L., McDonough, W.F. & O’Connell, R.J., 1998. Thermal structure, thickness and composition of continental lithosphere, Chem. Geo., 145 ( 3–4 ), 395 – 411.en_US
dc.identifier.citedreferenceSteinberger, B., Schmeling, H. & Marquart, G., 2001. Large‐scale lithospheric stress field and topography induced by global mantle circulation, Earth planet. Sci. Lett., 186 ( 1 ), 75 – 91.en_US
dc.identifier.citedreferenceStixrude, L. & Lithgow‐Bertelloni, C., 2005. Thermodynamics of mantle minerals – I. Physical properties, Geophys. J. Int., 162 ( 2 ), 610 – 632.en_US
dc.identifier.citedreferenceStixrude, L. & Lithgow‐Bertelloni, C., 2011. Thermodynamics of mantle minerals – II. Phase equilibria, Geophys. J. Int., 184 ( 3 ), 1180 – 1213.en_US
dc.identifier.citedreferenceThatcher, W. & Pollitz, F.F., 2008. Temporal evolution of continental lithospheric strength in actively deforming regions, GSA Today, 18 ( 4 /5), 4 – 11, doi: 10.1130/GSAT01804‐5A.1.en_US
dc.identifier.citedreferenceTurcotte, D.L., 1983. Mechanisms of crustal deformation, J. Geol. Soc., 140 ( 5 ), 701 – 724.en_US
dc.identifier.citedreferenceWorkman, R.K. & Hart, S.R., 2005. Major and trace element composition of the depleted MORB mantle (DMM), Earth planet. Sci. Lett., 231, 53 – 72.en_US
dc.identifier.citedreferenceXu, X., Lithgow‐Bertelloni, C. & Conrad, C.P., 2006. Reconstructions of Cenozoic seafloor ages: implications for sea level, Earth planet. Sci. Lett., 243, 552 – 564.en_US
dc.identifier.citedreferenceYuan, H., & Romanowicz, B., 2010, Lithospheric layering in the North American Craton, Nature, 466, 1063 – 1068.en_US
dc.identifier.citedreferenceZandt, G., Myers, S.C. & Wallace, T.C., 1995. Crust and mantle structure across the Basin and Range‐Colorado Plateau boundary at 37°N latitude and implications for Cenozoic extensional mechanism, J. geophys. Res., 100 ( B6 ), 10 529–10 548.en_US
dc.identifier.citedreferenceZoback, M.L., 1992. First‐ and second‐order patterns of stress in the lithosphere: the world stress map project, J. geophys. Res., 97 ( B8 ), 11 703–11 728.en_US
dc.identifier.citedreferenceZoback, M.L. & Mooney, W.D., 2003. Lithospheric buoyancy and continental intraplate stresses, Int. Geol. Rev., 45, 95 – 118.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.