Show simple item record

Development and Study of an Electron Cyclotron Resonance Waveguide Plasma Cathode for Electric Propulsion Applications.

dc.contributor.authorWeatherford, Brandon R. (Brandon Robert)en_US
dc.date.accessioned2012-01-26T20:03:13Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2012-01-26T20:03:13Z
dc.date.issued2011en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/89714
dc.description.abstractIn electrostatic ion thrusters and Hall thrusters, electron sources are used for propellant ionization and neutralization of the thruster beam. Thermionic emitter-based sources are commonly used, but they possess inherent lifetime limitations due to emitter depletion, poisoning, and sputtering of the emitter surface. For long duration electric propulsion (EP) driven missions or semi-permanent plasma contactor installations, these emitters have become primary limiting components on thruster life. There are two goals to this work: first, to develop and demonstrate the feasibility of an emitterless plasma cathode for EP; and second, to study the underlying physics of emitterless cathodes. The waveguide plasma cathode uses traveling 2.45 GHz microwaves in a cylindrical waveguide geometry, with permanent magnets, to generate an electron cyclotron resonance (ECR) discharge. Electron current is extracted from this source plasma through a downstream aperture. This device delivered up to 4.2 amperes of electron current, at low power (90 W/A) and high gas utilization. The device was tested with argon, krypton, and xenon. Probe diagnostics were used to measure axial profiles of electron density, electron temperature, and plasma potential, inside the device and in the external plume. These measurements show that some trace plume ionization is necessary for substantial current extraction. Plasma potential in the plume tracks with a biased anode, and a weak electric field in the plume transports current across the anode-cathode gap. Internal plasma conditions are also discussed. The plasma density in the extraction aperture increased by orders of magnitude, relative to the source discharge density, during electron current extraction. This is attributed to the formation of a dense plasma structure at the aperture. Laser collision-induced fluorescence (LCIF) was used to create two-dimensional images of plasma density and effective electron temperature at the aperture. The structure had a high density core, surrounded by a layer of high energy electrons accelerated by a double layer. Probe diagnostics verified the existence of a potential gradient between the aperture and bulk plasma. The aperture plasma acts as an effective loss area for electrons, and may be a common feature of plasma cathodes that should be included in models of these devices.en_US
dc.language.isoen_USen_US
dc.subjectPlasma Physicsen_US
dc.subjectElectric Propulsionen_US
dc.subjectPlasma Cathodeen_US
dc.subjectElectron Cyclotron Resonanceen_US
dc.titleDevelopment and Study of an Electron Cyclotron Resonance Waveguide Plasma Cathode for Electric Propulsion Applications.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineNuclear Engineering & Radiological Sciencesen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberFoster, John Edisonen_US
dc.contributor.committeememberGallimore, Alec D.en_US
dc.contributor.committeememberGilgenbach, Ronald M.en_US
dc.contributor.committeememberKamhawi, Hanien_US
dc.contributor.committeememberKushner, Marken_US
dc.subject.hlbsecondlevelNuclear Engineering and Radiological Sciencesen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/89714/1/brweathe_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.