Show simple item record

Large Scale Malware Analysis, Detection and Signature Generation.

dc.contributor.authorHu, Xinen_US
dc.date.accessioned2012-01-26T20:04:56Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2012-01-26T20:04:56Z
dc.date.issued2011en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/89760
dc.description.abstractAs the primary vehicle for most organized cybercrimes, malicious software (or malware) has become one of the most serious threats to computer systems and the Internet. With the recent advent of automated malware development toolkits, it has become relatively easy, even for marginally skilled adversaries, to create and mutate malware, bypassing Anti-Virus (AV) detection. This has led to a surge in the number of new malware threats and has created several major challenges for the AV industry. AV companies typically receive tens of thousands of suspicious samples daily. However, the overwhelming number of new malware easily overtax the available human resources at AV companies, making them less responsive to emerging threats and leading to poor detection rates. To address these issues, this dissertation proposes several new and scalable systems to facilitate malware analysis and detection, with the focus on a central theme: ``automation and scalability". This dissertation makes four primary contributions. First, it builds a large-scale malware database management system called SMIT that addresses the challenges of determining whether a suspicious sample is indeed malicious. SMIT exploits the insight that most new malicious samples are simple syntactic variations of existing malware. Thus, one way to ascertain the maliciousness of an unknown sample is to check if it is sufficiently similar to any existing malware. SMIT is designed to make such decisions efficiently using malware's function call graph---a high-level structural representation that is less susceptible to the low-level obfuscation employed by malware writers to evade detection. Second, the dissertation develops an automatic malware clustering system called MutantX. By quickly grouping similar samples into clusters, MutantX allows malware analysts to focus on representative samples and automatically generate labels based on samples’ association with existing groups. Third, this dissertation introduces a signature-generation system, called Hancock, that automatically creates high-quality string signatures with extremely low false-positive rates. Finally, observing that two widely used malware analysis approaches---i.e., static and dynamic analyses---have their respective pros and cons, this dissertation proposes a novel system that optimally integrates static-feature and dynamic-behavior based malware clusterings, mitigating their respective shortcomings without losing their merits.en_US
dc.language.isoen_USen_US
dc.subjectComputer Securityen_US
dc.subjectMalware Analysis and Detectionen_US
dc.subjectLarge-Scale Systemsen_US
dc.subjectMalware Clusteringen_US
dc.subjectMalware Signature Generationen_US
dc.titleLarge Scale Malware Analysis, Detection and Signature Generation.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineComputer Science & Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberShin, Kang Geunen_US
dc.contributor.committeememberHalderman, J. Alexen_US
dc.contributor.committeememberMei, Qiaozhuen_US
dc.contributor.committeememberPrakash, Atulen_US
dc.subject.hlbsecondlevelComputer Scienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/89760/1/huxin_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.