Show simple item record

Photoconductive Hybrid Films via Directional Self‐Assembly of C 60 on Aligned Carbon Nanotubes

dc.contributor.authorMeshot, Eric R.en_US
dc.contributor.authorPatel, Keval D.en_US
dc.contributor.authorTawfick, Sameh H.en_US
dc.contributor.authorJuggernauth, K. Anneen_US
dc.contributor.authorBedewy, Mostafaen_US
dc.contributor.authorVerploegen, Eric A.en_US
dc.contributor.authorDe Volder, Michaël F. L.en_US
dc.contributor.authorHart, A. Johnen_US
dc.date.accessioned2012-03-16T15:53:30Z
dc.date.available2013-04-01T14:17:24Zen_US
dc.date.issued2012-02-08en_US
dc.identifier.citationMeshot, Eric R.; Patel, Keval D.; Tawfick, Sameh; Juggernauth, K. Anne; Bedewy, Mostafa; Verploegen, Eric A.; De Volder, Michaël F. L. ; Hart, A. John (2012). "Photoconductive Hybrid Films via Directional Selfâ Assembly of C 60 on Aligned Carbon Nanotubes." Advanced Functional Materials 22(3): 577-584. <http://hdl.handle.net/2027.42/90059>en_US
dc.identifier.issn1616-301Xen_US
dc.identifier.issn1616-3028en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90059
dc.description.abstractHybrid nanostructured materials can exhibit different properties than their constituent components, and can enable decoupled engineering of energy conversion and transport functions. Novel means of building hybrid assemblies of crystalline C 60 and carbon nanotubes (CNTs) are presented, wherein aligned CNT films direct the crystallization and orientation of C 60 rods from solution. In these hybrid films, the C 60 rods are oriented parallel to the direction of the CNTs throughout the thickness of the film. High‐resolution imaging shows that the crystals incorporate CNTs during growth, yet grazing‐incidence X‐ray diffraction (GIXD) shows that the crystal structure of the C 60 rods is not perturbed by the CNTs. Growth kinetics of the C 60 rods are enhanced 8‐fold on CNTs compared to bare Si, emphasizing the importance of the aligned, porous morphology of the CNT films as well as the selective surface interactions between C 60 and CNTs. Finally, it is shown how hybrid C 60 –CNT films can be integrated electrically and employed as UV detectors with a high photoconductive gain and a responsivity of 10 5 A W −1 at low biases (± 0.5 V). The finding that CNTs can induce rapid, directional crystallization of molecules from solution may have broader implications to the science and applications of crystal growth, such as for inorganic nanocrystals, proteins, and synthetic polymers. Aligned carbon nanotube (CNT) films cause rapid, directional crystallization of C 60 rods from solution, resulting in hybrid structures where the C 60 rods incorporate CNTs during growth and are oriented parallel to the direction of the CNTs. The hybrid sheets are integrated electrically and employed as UV detectors with high photoconductive gain (responsivity as high as 10 5 A W −1 at low biases (±0.5 V)).en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherFullerenesen_US
dc.subject.otherHybrid Materialsen_US
dc.subject.otherCarbon Nanotubesen_US
dc.subject.otherPhotoconductivityen_US
dc.subject.otherSelf‐Assemblyen_US
dc.titlePhotoconductive Hybrid Films via Directional Self‐Assembly of C 60 on Aligned Carbon Nanotubesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelEngineering (General)en_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, MI 48104, USA.en_US
dc.contributor.affiliationumDepartment of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, MI 48104, USAen_US
dc.contributor.affiliationotherIMEC, Kapeldreef 75, 3001 Heverlee, Belgium, Department of Mechanical Engineering, KULeuven, Celestijnenlaan 300B, 3001 Leuven, Belgiumen_US
dc.contributor.affiliationotherStanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90059/1/adfm_201102393_sm_suppl.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90059/2/577_ftp.pdf
dc.identifier.doi10.1002/adfm.201102393en_US
dc.identifier.sourceAdvanced Functional Materialsen_US
dc.identifier.citedreferencea) L. A. Girifalco, M. Hodak, R. S. Lee, Phys. Rev. B 2000, 62, 13104; b) R. S. Ruoff, A. P. Hickman, J. Phys. Chem. 1993, 97, 2494 – 2496.en_US
dc.identifier.citedreferenceS. Ghosh, Il Nuovo Cimento D 1984, 4, 229 – 244.en_US
dc.identifier.citedreferenceB. Wang, R. Bennett, E. Verploegen, A. Hart, R. Cohen, J. Phys. Chem. C 2007, 111, 5859 – 5865.en_US
dc.identifier.citedreferenceR. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, Nature 1997, 389, 827 – 829.en_US
dc.identifier.citedreferenceR. Sharma, C. Y. Lee, J. H. Choi, K. Chen, M. S. Strano, Nano Lett. 2007, 7, 2693 – 2700.en_US
dc.identifier.citedreferenceD. S. Bethune, G. Meijer, W. C. Tang, H. J. Rosen, W. G. Golden, H. Seki, C. A. Brown, M. S. Devries, Chem. Phys. Lett. 1991, 179, 181 – 186.en_US
dc.identifier.citedreferenceM. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 2005, 409, 47 – 99.en_US
dc.identifier.citedreferenceA. M. Rao, P. Zhou, K. A. Wang, G. T. Hager, J. M. Holden, Y. Wang, W. T. Lee, X. X. Bi, P. C. Eklund, D. S. Cornett, M. A. Duncan, I. J. Amster, Science 1993, 259, 955 – 957.en_US
dc.identifier.citedreferenceY. J. Guo, N. Karasawa, W. A. Goddard, Nature 1991, 351, 464 – 467.en_US
dc.identifier.citedreferenceM. V. Korobov, E. B. Stukalin, A. L. Mirakyan, I. S. Neretin, Y. L. Slovokhotov, A. V. Dzyabchenko, A. I. Ancharov, B. P. Tolochko, Carbon 2003, 41, 2743 – 2755.en_US
dc.identifier.citedreferencea) E. V. Skokan, V. I. Privalov, I. V. Arkhangel'skii, V. Y. Davydov, N. B. Tamm, J. Phys. Chem. B 1999, 103, 2050 – 2053; b) A. Masuhara, Z. Q. Tan, H. Kasai, H. Nakanishi, H. Oikawa, Jan. J. Appl. Phys. 2009, 48, 3.en_US
dc.identifier.citedreferenceR. G. Alargova, S. Deguchi, K. Tsujii, J. Am. Chem. Soc. 2001, 123, 10460 – 10467.en_US
dc.identifier.citedreferencea) H. X. Ji, J. S. Hu, Q. X. Tang, W. G. Song, C. R. Wang, W. P. Hu, L. J. Wan, S. T. Lee, J. Phys. Chem. C 2007, 111, 10498 – 10502; b) K. Miyazawa, Y. Kuwasaki, A. Obayashi, M. Kuwabara, J. Mater. Res. 2002, 17, 83 – 88.en_US
dc.identifier.citedreferencea) J. K. Lim, B. Y. Lee, M. L. Pedano, A. J. Senesi, J.‐W. Jang, W. Shim, S. Hong, C. A. Mirkin, Small 2010, 6, 1736 – 1740; b) S. Liu, J. B. H. Tok, J. Locklin, Z. Bao, Small 2006, 2, 1448 – 1453.en_US
dc.identifier.citedreferenceL. A. Girifalco, M. Hodak, Phys. Rev. B 2002, 65, 125404.en_US
dc.identifier.citedreferenceL. M. Woods, S. C. Babrevedescu, T. L. Reinecke, Phys. Rev. B 2007, 75, 155415.en_US
dc.identifier.citedreferenceA. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, Z. Bao, Nature 2006, 444, 913 – 917.en_US
dc.identifier.citedreferenceY. Diao, T. Harada, A. S. Myerson, T. Alan Hatton, B. L. Trout, Nat. Mater. 2011; Y. Diao, A. S. Myerson, T. A. Hatton, B. L. Trout, Langmuir 2011, 27, 5324 – 5334.en_US
dc.identifier.citedreferencea) C. Y. Li, L. Li, W. Cai, S. L. Kodjie, K. K. Tenneti, Adv. Mater. 2005, 17, 1198 – 1202; b) B. Li, L. Li, B. Wang, C. Y. Li, Nat. Nanotechnol. 2009, 4, 358 – 362.en_US
dc.identifier.citedreferenceT. Sugimoto, Adv. Colloid Interface Sci. 1987, 28, 65 – 108.en_US
dc.identifier.citedreferencea) H. Heyer, Angew. Chem. Int. Ed. 1966, 5, 67 – 78; b) G. W. Sears, Acta Metall.a 1955, 3, 361 – 366; c) M. J. Bierman, Y. K. A. Lau, A. V. Kvit, A. L. Schmitt, S. Jin, Science 2008, 320, 1060 – 1063.en_US
dc.identifier.citedreferencea) J. G. Ok, S. H. Tawfick, K. A. Juggernauth, K. Sun, Y. Zhang, A. J. Hart, Adv. Funct. Mater. 2010, 20, 2470 – 2480; b) D. Eder, Chem. Rev. 2010, 110, 1348 – 1385.en_US
dc.identifier.citedreferenceB. Pan, B. Xing, Environ. Sci. Technol. 2008, 42, 9005 – 9013.en_US
dc.identifier.citedreferenceG. Konstantatos, E. H. Sargent, Nat. Nanotechnol. 2010, 5, 391 – 400.en_US
dc.identifier.citedreferencea) M. E. Itkis, F. Borondics, A. Yu, R. C. Haddon, Science 2006, 312, 413 – 416; b) G. Vera‐Reveles, T. J. Simmons, M. Bravo‐Sánchez, M. A. Vidal, H. Navarro‐Contreras, F. J. González, ACS Appl. Mater. Interfaces 2011, 3, 3200 – 3204.en_US
dc.identifier.citedreferenceR. W. Lof, M. A. Vanveenendaal, B. Koopmans, H. T. Jonkman, G. A. Sawatzky, Phys. Rev. Lett. 1992, 68, 3924 – 3927.en_US
dc.identifier.citedreferenceY. Zhang, W. Liu, L. Jiang, L. Z. Fan, C. R. Wang, W. P. Hu, H. Z. Zhong, Y. F. Li, S. H. Yang, J. Mater. Chem. 2010, 20, 953 – 956.en_US
dc.identifier.citedreferenceL. Wang, B. B. Liu, S. D. Yu, M. G. Yao, D. D. Liu, Y. Y. Hou, T. Cui, G. T. Zou, B. Sundqvist, H. You, D. K. Zhang, D. G. Ma, Chem. Mater. 2006, 18, 4190 – 4194.en_US
dc.identifier.citedreferenceS. Banerjee, S. S. Wong, Nano Lett. 2002, 2, 195 – 200.en_US
dc.identifier.citedreferenceG. Konstantatos, L. Levina, A. Fischer, E. H. Sargent, Nano Lett. 2008, 8, 1446 – 1450; J. S. Liu, Appl. Phys. Lett. 2010, 97, 251102.en_US
dc.identifier.citedreferencea) D. J. Bindl, M.‐Y. Wu, F. C. Prehn, M. S. Arnold, Nano Lett. 2010, 11, 455 – 460; b) V. C. Tung, J.‐H. Huang, I. Tevis, F. Kim, J. Kim, C.‐W. Chu, S. I. Stupp, J. Huang, J. Am. Chem. Soc. 2011, 133, 4940 – 4947; c) C. Li, Y. Chen, S. A. Ntim, S. Mitra, Appl. Phys. Lett. 2010, 96, 143303.en_US
dc.identifier.citedreferenceM. De Volder, S. H. Tawfick, S. J. Park, D. Copic, Z. Zhao, W. Lu, A. J. Hart, Adv. Mater. 2010, 22, 4384 – 4389.en_US
dc.identifier.citedreferenceC. Park, H. J. Song, H. C. Choi, Chem. Commun. 2009, 4803 – 4805.en_US
dc.identifier.citedreferencea) H. Y. Gan, H. B. Liu, Y. L. Li, L. B. Gan, L. Jiang, T. G. Jiu, N. Wang, X. R. He, D. B. Zhu, Carbon 2005, 43, 205 – 208; b) K. Miyazawa, J. Minato, T. Yoshii, M. Fujino, T. Suga, J. Mater. Res. 2005, 20, 688 – 695; c) J. Minato, K. Miyazawa, Carbon 2005, 43, 2837 – 2841; M. Sathish, K. Miyazawa, J. Am. Chem. Soc. 2007, 129, 13816 – 13817.en_US
dc.identifier.citedreferenceH. X. Ji, J. S. Hu, L. J. Wan, Q. X. Tang, W. P. Hu, J. Mater. Chem. 2008, 18, 328 – 332.en_US
dc.identifier.citedreferenceL. Wang, B. B. Liu, D. Liu, M. G. Yao, Y. Y. Hou, S. D. Yu, T. Cui, D. M. Li, G. T. Zou, A. Iwasiewicz, B. Sundqvist, Adv. Mater. 2006, 18, 1883.en_US
dc.identifier.citedreferenceH. S. Shin, S. M. Yoon, Q. Tang, B. Chon, T. Joo, H. C. Choi, Angew. Chem. Int. Ed. 2008, 47, 693 – 696.en_US
dc.identifier.citedreferenceM. G. Yao, B. M. Andersson, P. Stenmark, B. Sundqvist, B. B. Liu, T. Wagberg, Carbon 2009, 47, 1181 – 1188.en_US
dc.identifier.citedreferenceS. Saito, A. Oshiyama, Phys. Rev. Lett. 1991, 66, 2637 – 2640.en_US
dc.identifier.citedreferenceM. S. Arnold, J. D. Zimmerman, C. K. Renshaw, X. Xu, R. R. Lunt, C. M. Austin, S. R. Forrest, Nano Lett. 2009, 9, 3354 – 3358.en_US
dc.identifier.citedreferenceK. Esfarjani, M. Zebarjadi, Y. Kawazoe, Phys. Rev. B 2006, 73, 085406.en_US
dc.identifier.citedreferenceL. Ma, J. Ouyang, Y. Yang, Appl. Phys. Lett. 2004, 84, 4786 – 4788.en_US
dc.identifier.citedreferencea) T. Doi, K. Koyama, Y. Chiba, H. Tsuji, K. Ueno, S.‐R. Chen, N. Aoki, J. P. Bird, Y. Ochiai, Jpn. J. Appl. Phys. 2010, 49, 04DN12; b) T. D. Anthopoulos, B. Singh, N. Marjanovic, N. S. Sariciftci, A. M. Ramil, H. Sitter, M. Colle, D. M. de Leeuw, Appl. Phys. Lett. 2006, 89, 213504 – 213503.en_US
dc.identifier.citedreferenceY. Z. Jin, R. J. Curry, J. Sloan, R. A. Hatton, L. C. Chong, N. Blanchard, V. Stolojan, H. W. Kroto, S. R. P. Silva, J. Mater. Chem. 2006, 16, 3715 – 3720.en_US
dc.identifier.citedreferenceS. Liu, A. L. Briseno, S. C. B. Mannsfeld, W. You, J. Locklin, H. W. Lee, Y. Xia, Z. Bao, Adv. Funct. Mater. 2007, 17, 2891 – 2896.en_US
dc.identifier.citedreferenceN. E. Chayen, Curr. Opin. Struct. Biol. 2004, 14, 577 – 583.en_US
dc.identifier.citedreferencea) J. A. van Meel, R. P. Sear, D. Frenkel, Phys. Rev. Lett. 2010, 105, 205501; b) E. Curcio, V. Curcio, G. D. Profio, E. Fontananova, E. Drioli, J. Phys. Chem. B 2010, 114, 13650 – 13655; c) N. E. Chayen, E. Saridakis, R. P. Sear, Proc. Natl. Acad. Sci. USA 2006, 103, 597 – 601.en_US
dc.identifier.citedreferenceA. Hart, A. Slocum, J. Phys. Chem. B 2006, 110, 8250 – 8257.en_US
dc.identifier.citedreferencea) K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 2004, 306, 1362 – 1364; b) M. F. L. De Volder, D. O. Vidaud, E. R. Meshot, S. Tawfick, A. J. Hart, Microelectron. Eng. 2010, 87, 1233 – 1238.en_US
dc.identifier.citedreferenceM. Bedewy, E. Meshot, H. Guo, E. Verploegen, W. Lu, A. Hart, J. Phys. Chem. C 2009, 113, 20576 – 20582.en_US
dc.identifier.citedreferenceS. Tawfick, K. O'Brien, A. Hart, Small 2009, 5, 2467 – 2473.en_US
dc.identifier.citedreferencea) S. Tawfick, M. De Volder, A. J. Hart, Langmuir 2011, 27, 6389 – 6394; b) M. De Volder, S. H. Tawfick, S. J. Park, D. Copic, Z. Z. Zhao, W. Lu, A. J. Hart, Adv. Mater. 2010, 22, 4384 – 4389; c) Z. Z. Zhao, S. H. Tawfick, S. J. Park, M. De Volder, A. J. Hart, W. Lu, Phys. Rev. E 2010, 82, 41605; d) M. F. L. De Volder, S. Tawfick, S. J. Park, A. J. Hart, ACS Nano 2011, 5, 7310 – 7317.en_US
dc.identifier.citedreferenceP. H. Hermans, Contribution to the physics of cellulose fibres; a study in sorption, density, refractive power and orientation, Elsevier Pub. Co., Amsterdam 1946.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.