Show simple item record

Postpartum Group A Streptococcus Sepsis and Maternal Immunology

dc.contributor.authorMason, Katie L.en_US
dc.contributor.authorAronoff, David M.en_US
dc.date.accessioned2012-03-16T16:00:17Z
dc.date.available2013-04-01T14:17:24Zen_US
dc.date.issued2012-02en_US
dc.identifier.citationMason, Katie L.; Aronoff, David M. (2012). "Postpartum Group A Streptococcus Sepsis and Maternal Immunology." American Journal of Reproductive Immunology 67(2). <http://hdl.handle.net/2027.42/90336>en_US
dc.identifier.issn1046-7408en_US
dc.identifier.issn1600-0897en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90336
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.subject.otherGroup a Streptococcusen_US
dc.subject.otherPostpartum Sepsisen_US
dc.subject.otherFemale Reproductive Tracten_US
dc.subject.otherMaternal Immunologyen_US
dc.titlePostpartum Group A Streptococcus Sepsis and Maternal Immunologyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumReproductive Sciences Program, University of Michigan Medical School, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDivision of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDivision of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90336/1/j.1600-0897.2011.01083.x.pdf
dc.identifier.doi10.1111/j.1600-0897.2011.01083.xen_US
dc.identifier.sourceAmerican Journal of Reproductive Immunologyen_US
dc.identifier.citedreferenceLee SE, Romero R, Park IS, Seong HS, Park CW, Yoon BH: Amniotic fluid prostaglandin concentrations increase before the onset of spontaneous labor at term. J Matern Fetal Neonatal Med 2008; 21: 89 – 94.en_US
dc.identifier.citedreferenceBernheim J, Shapira J, David F, Behari C, Gelerntner I, Rathaus M: Renal prostaglandins E2 and F2 alpha throughout normal human pregnancy. Eur J Clin Invest 1986; 16: 113 – 116.en_US
dc.identifier.citedreferenceAronoff DM, Hao Y, Chung J, Coleman N, Lewis C, Peres CM, Serezani CH, Chen GH, Flamand N, Brock TG, Peters‐Golden M: Misoprostol impairs female reproductive tract innate immunity against Clostridium sordellii. J Immunol 2008; 180: 8222 – 8230.en_US
dc.identifier.citedreferenceGoldmann O, Hertzen E, Hecht A, Schmidt H, Lehne S, Norrby‐Teglund A, Medina E: Inducible cyclooxygenase released prostaglandin E2 modulates the severity of infection caused by Streptococcus pyogenes. J Immunol 2010; 185: 2372 – 2381.en_US
dc.identifier.citedreferenceMaloney CG, Thompson SD, Hill HR, Bohnsack JF, McIntyre TM, Zimmerman GA: Induction of cyclooxygenase‐2 by human monocytes exposed to group B streptococci. J Leukoc Biol 2000; 67: 615 – 621.en_US
dc.identifier.citedreferenceMedeiros AI, Serezani CH, Lee SP, Peters‐Golden M: Efferocytosis impairs pulmonary macrophage and lung antibacterial function via PGE2/EP2 signaling. J Exp Med 2009; 206: 61 – 68.en_US
dc.identifier.citedreferenceN’ Guessan PD, Hippenstiel S, Etouem MO, Zahlten J, Beermann W, Lindner D, Opitz B, Witzenrath M, Rosseau S, Suttorp N, Schmeck B: Streptococcus pneumoniae induced p38 MAPK‐ and NF‐kappaB‐dependent COX‐2 expression in human lung epithelium. Am J Physiol Lung Cell Mol Physiol 2006; 290: L1131 – L1138.en_US
dc.identifier.citedreferenceStables MJ, Newson J, Ayoub SS, Brown J, Hyams CJ, Gilroy DW: Priming innate immune responses to infection by cyclooxygenase inhibition kills antibiotic‐susceptible and ‐resistant bacteria. Blood 2010; 116: 2950 – 2959.en_US
dc.identifier.citedreferenceBennett PR, Rose MP, Myatt L, Elder MG: Preterm labor: stimulation of arachidonic acid metabolism in human amnion cells by bacterial products. Am J Obstet Gynecol 1987; 156: 649 – 655.en_US
dc.identifier.citedreferenceRayon JI, Carver JD, Wyble LE, Wiener D, Dickey SS, Benford VJ, Chen LT, Lim DV: The fatty acid composition of maternal diet affects lung prostaglandin E2 levels and survival from group B streptococcal sepsis in neonatal rat pups. J Nutr 1997; 127: 1989 – 1992.en_US
dc.identifier.citedreferenceShort BL, Miller MK, Fletcher JR: Improved survival in the suckling rat model of group B streptococcal sepsis after treatment with nonsteroidal anti‐inflammatory drugs. Pediatrics 1982; 70: 343 – 347.en_US
dc.identifier.citedreferenceGoldmann O, von Kockritz‐Blickwede M, Holtje C, Chhatwal GS, Geffers R, Medina E: Transcriptome analysis of murine macrophages in response to infection with Streptococcus pyogenes reveals an unusual activation program. Infect Immun 2007; 75: 4148 – 4157.en_US
dc.identifier.citedreferenceAronoff DM, Bloch KC: Assessing the relationship between the use of nonsteroidal antiinflammatory drugs and necrotizing fasciitis caused by group A streptococcus. Medicine (Baltimore) 2003; 82: 225 – 235.en_US
dc.identifier.citedreferenceBarnham M, Anderson AW: Non‐steroidal anti‐inflammatory drugs (NSAIDs). A predisposing factor for streptococcal bacteraemia? Adv Exp Med Biol 1997; 418: 145 – 147.en_US
dc.identifier.citedreferenceHamilton SM, Bayer CR, Stevens DL, Lieber RL, Bryant AE: Muscle injury, vimentin expression, and nonsteroidal anti‐inflammatory drugs predispose to cryptic group A streptococcal necrotizing infection. J Infect Dis 2008; 198: 1692 – 1698.en_US
dc.identifier.citedreferenceRavel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, Karlebach S, Gorle R, Russell J, Tacket CO, Brotman RM, Davis CC, Ault K, Peralta L, Forney LJ: Vaginal microbiome of reproductive‐age women. Proc Natl Acad Sci U S A 2011; 108 ( Suppl 1 ): 4680 – 4687.en_US
dc.identifier.citedreferenceMing L, Xiaoling P, Yan L, Lili W, Qi W, Xiyong Y, Boyao W, Ning H: Purification of antimicrobial factors from human cervical mucus. Hum Reprod 2007; 22: 1810 – 1815.en_US
dc.identifier.citedreferenceWitkin SS, Linhares IM, Giraldo P: Bacterial flora of the female genital tract: function and immune regulation. Best Pract Res Clin Obstet Gynaecol 2007; 21: 347 – 354.en_US
dc.identifier.citedreferenceZhou X, Brotman RM, Gajer P, Abdo Z, Schuette U, Ma S, Ravel J, Forney LJ: Recent advances in understanding the microbiology of the female reproductive tract and the causes of premature birth. Infect Dis Obstet Gynecol 2010; 2010: 737425.en_US
dc.identifier.citedreferenceBrotman RM, Ghanem KG, Klebanoff MA, Taha TE, Scharfstein DO, Zenilman JM: The effect of vaginal douching cessation on bacterial vaginosis: a pilot study. Am J Obstet Gynecol 2008; 198: 628.e1 – 628.e7.en_US
dc.identifier.citedreferenceDiGiulio DB, Romero R, Amogan HP, Kusanovic JP, Bik EM, Gotsch F, Kim CJ, Erez O, Edwin S, Relman DA: Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture‐based investigation. PLoS One 2008; 3: e3056.en_US
dc.identifier.citedreferenceGoldenberg RL, Hauth JC, Andrews WW: Intrauterine infection and preterm delivery. N Engl J Med 2000; 342: 1500 – 1507.en_US
dc.identifier.citedreferenceHan YW, Shen T, Chung P, Buhimschi IA, Buhimschi CS: Uncultivated bacteria as etiologic agents of intra‐amniotic inflammation leading to preterm birth. J Clin Microbiol 2009; 47: 38 – 47.en_US
dc.identifier.citedreferenceSteel JH, Malatos S, Kennea N, Edwards AD, Miles L, Duggan P, Reynolds PR, Feldman RG, Sullivan MH: Bacteria and inflammatory cells in fetal membranes do not always cause preterm labor. Pediatr Res 2005; 57: 404 – 411.en_US
dc.identifier.citedreferenceMaharaj D: Puerperal pyrexia: a review. Part I. Obstet Gynecol Surv 2007; 62: 393 – 399.en_US
dc.identifier.citedreferenceCastagnola DE, Hoffman MK, Carlson J, Flynn C: Necrotizing cervical and uterine infection in the postpartum period caused by group A streptococcus. Obstet Gynecol 2008; 111 ( 2 Pt 2 ): 533 – 535.en_US
dc.identifier.citedreferenceStevens DL, Tanner MH, Winship J, Swarts R, Ries KM, Schlievert PM, Kaplan E: Severe group A streptococcal infections associated with a toxic shock‐like syndrome and scarlet fever toxin A. N Engl J Med 1989; 321: 1 – 7.en_US
dc.identifier.citedreferencevan Dillen J, Zwart J, Schutte J, van Roosmalen J: Maternal sepsis: epidemiology, etiology and outcome. Curr Opin Infect Dis 2010; 23: 249 – 254.en_US
dc.identifier.citedreferenceCantwell R, Clutton‐Brock T, Cooper G, Dawson A, Drife J, Garrod D, Harper A, Hulbert D, Lucas S, McClure J, Millward‐Sadler H, Neilson J, Nelson‐Piercy C, Norman J, O’Herlihy C, Oates M, Shakespeare J, de Swiet M, Williamson C, Beale V, Knight M, Lennox C, Miller A, Parmar D, Rogers J, Springett A: Saving mothers’ lives: reviewing maternal deaths to make motherhood safer: 2006–2008. The Eighth Report of the Confidential Enquiries into Maternal Deaths in the United Kingdom. BJOG 2011; 118 ( Suppl 1 ): 1 – 203.en_US
dc.identifier.citedreferenceWHO: Maternal mortality in 2005: estimates developed by WHO, UNICEF, UNFPA, and the World Bank. ( http://www.who.int/whosis/mme_2005.pdf ), 2007.en_US
dc.identifier.citedreferenceSeale AC, Mwaniki M, Newton CR, Berkley JA: Maternal and early onset neonatal bacterial sepsis: burden and strategies for prevention in sub‐Saharan Africa. Lancet Infect Dis 2009; 9: 428 – 438.en_US
dc.identifier.citedreferenceUNICEF: The state of the world’s children 2009: maternal and newborn health. ( http://www.unicef.org/publications/files/The_State_of_the_Worlds_Children_2009.pdf ), 2008.en_US
dc.identifier.citedreferenceHarper A (ed): Chapter 7: Sepsis. London, Centre for Maternal and Child Enquiries (CMACE), BJOG, 2011.en_US
dc.identifier.citedreferenceAronoff DM, Mulla ZD: Postpartum invasive group A streptococcal disease in the modern era. Infect Dis Obstet Gynecol 2008; 2008: 796892.en_US
dc.identifier.citedreferenceCMACEL: Saving mothers’ lives 2006–2008: briefing on genital tract sepsis. BJOG 2010; 118 ( Suppl. 1 ): 1 – 203.en_US
dc.identifier.citedreferenceMomoh MA, Ezugworie OJ, Ezeigwe HO: Causes and management of puerperal sepsis: the health personnel view point. Adv Biol Res 2010; 4: 154 – 158.en_US
dc.identifier.citedreferenceNathan L, Leveno KJ: Group a streptococcal puerperal sepsis: historical review and 1990s resurgence. Infect Dis Obstet Gynecol 1994; 1: 252 – 255.en_US
dc.identifier.citedreferenceCone LA, Woodard DR, Schlievert PM, Tomory GS: Clinical and bacteriologic observations of a toxic shock‐like syndrome due to Streptococcus pyogenes. N Engl J Med 1987; 317: 146 – 149.en_US
dc.identifier.citedreferenceMonif GRG, Baker DA eds: Infectious Diseases in Obstetrics and Gynecology, 6th edn. Group A Beta‐Hemolytic Streptococcus ( Streptococcus pyogenes ). London, Informa Healthcare, 2008.en_US
dc.identifier.citedreferenceMoses AE, Ziv A, Harari M, Rahav G, Shapiro M, Englehard D: Increased incidence and severity of Streptococcus pyogenes bacteremia in young children. Pediatr Infect Dis J 1995; 14: 767 – 770.en_US
dc.identifier.citedreferenceMead PB, Winn WC: Vaginal‐rectal colonization with group A streptococci in late pregnancy. Infect Dis Obstet Gynecol 2000; 8: 217 – 219.en_US
dc.identifier.citedreferenceHPA: Interim UK guidelines for management of close community contacts of invasive group A streptococcal disease. Commun Dis Public Health 2004; 7: 354 – 361.en_US
dc.identifier.citedreferenceMor G, Cardenas I: The immune system in pregnancy: a unique complexity. Am J Reprod Immunol 2010; 63: 425 – 433.en_US
dc.identifier.citedreferenceLamagni TL, Efstratiou A, Dennis J, Nair P, Kearney J, George R: Increase in invasive group A streptococcal infections in England, Wales and Northern Ireland, 2008–9. Euro Surveill 2009; 14: 1 – 2.en_US
dc.identifier.citedreferenceChuang I, Van Beneden C, Beall B, Schuchat A: Population‐based surveillance for postpartum invasive group a streptococcus infections, 1995–2000. Clin Infect Dis 2002; 35: 665 – 670.en_US
dc.identifier.citedreferenceSmaill FM, Gyte GM: Antibiotic prophylaxis versus no prophylaxis for preventing infection after cesarean section. Cochrane Database Syst Rev 2010; ( 1 ): CD007482.en_US
dc.identifier.citedreferenceCrum NF, Chun HM, Gaylord TG, Hale BR: Group A streptococcal toxic shock syndrome developing in the third trimester of pregnancy. Infect Dis Obstet Gynecol 2002; 10: 209 – 216.en_US
dc.identifier.citedreferenceDeutscher M, Lewis M, Zell ER, Taylor Jr TH, Van Beneden C, Schrag S: Incidence and severity of invasive Streptococcus pneumoniae, group A Streptococcus, and group B Streptococcus infections among pregnant and postpartum women. Clin Infect Dis 2011; 53: 114 – 123.en_US
dc.identifier.citedreferenceO’Loughlin RE, Roberson A, Cieslak PR, Lynfield R, Gershman K, Craig A, Albanese BA, Farley MM, Barrett NL, Spina NL, Beall B, Harrison LH, Reingold A, Van Beneden C: The epidemiology of invasive group A streptococcal infection and potential vaccine implications: United States, 2000–2004. Clin Infect Dis 2007; 45: 853 – 862.en_US
dc.identifier.citedreferenceBisno AL, Brito MO, Collins CM: Molecular basis of group A streptococcal virulence. Lancet Infect Dis 2003; 3: 191 – 200.en_US
dc.identifier.citedreferenceBohach GA, Fast DJ, Nelson RD, Schlievert PM: Staphylococcal and streptococcal pyrogenic toxins involved in toxic shock syndrome and related illnesses. Crit Rev Microbiol 1990; 17: 251 – 272.en_US
dc.identifier.citedreferenceLynskey NN, Lawrenson RA, Sriskandan S: New understandings in Streptococcus pyogenes. Curr Opin Infect Dis 2011; 24: 196 – 202.en_US
dc.identifier.citedreferenceDmitriev AV, Chaussee MS: The Streptococcus pyogenes proteome: maps, virulence factors and vaccine candidates. Future Microbiol 2010; 5: 1539 – 1551.en_US
dc.identifier.citedreferenceKwinn LA, Nizet V: How group A Streptococcus circumvents host phagocyte defenses. Future Microbiol 2007; 2: 75 – 84.en_US
dc.identifier.citedreferenceFischetti VA: Streptococcal M protein. Sci Am 1991; 264: 58 – 65.en_US
dc.identifier.citedreferenceWessels MR, Moses AE, Goldberg JB, DiCesare TJ: Hyaluronic acid capsule is a virulence factor for mucoid group A streptococci. Proc Natl Acad Sci U S A 1991; 88: 8317 – 8321.en_US
dc.identifier.citedreferenceHanski E, Caparon M: Protein F, a fibronectin‐binding protein, is an adhesin of the group A streptococcus Streptococcus pyogenes. Proc Natl Acad Sci U S A 1992; 89: 6172 – 6176.en_US
dc.identifier.citedreferenceHanski E, Horwitz PA, Caparon MG: Expression of protein F, the fibronectin‐binding protein of Streptococcus pyogenes JRS4, in heterologous streptococcal and enterococcal strains promotes their adherence to respiratory epithelial cells. Infect Immun 1992; 60: 5119 – 5125.en_US
dc.identifier.citedreferenceOfek I, Beachey EH, Jefferson W, Campbell GL: Cell membrane‐binding properties of group A streptococcal lipoteichoic acid. J Exp Med 1975; 141: 990 – 1003.en_US
dc.identifier.citedreferenceTilanus AM, de Geus HR, Rijnders BJ, Dwarkasing RS, van der Hoven B, Bakker J: Severe group A streptococcal toxic shock syndrome presenting as primary peritonitis: a case report and brief review of the literature. Int J Infect Dis 2010; 14 ( Suppl 3 ): e208 – e212.en_US
dc.identifier.citedreferenceLappin E, Ferguson AJ: Gram‐positive toxic shock syndromes. Lancet Infect Dis 2009; 9: 281 – 290.en_US
dc.identifier.citedreferenceLamagni TL, Darenberg J, Luca‐Harari B, Siljander T, Efstratiou A, Henriques‐Normark B, Vuopio‐Varkila J, Bouvet A, Creti R, Ekelund K, Koliou M, Reinert RR, Stathi A, Strakova L, Ungureanu V, Schalen C, Jasir A: Epidemiology of severe Streptococcus pyogenes disease in Europe. J Clin Microbiol 2008; 46: 2359 – 2367.en_US
dc.identifier.citedreferenceHauser AR, Stevens DL, Kaplan EL, Schlievert PM: Molecular analysis of pyrogenic exotoxins from Streptococcus pyogenes isolates associated with toxic shock‐like syndrome. J Clin Microbiol 1991; 29: 1562 – 1567.en_US
dc.identifier.citedreferenceMusser JM, Kapur V, Kanjilal S, Shah U, Musher DM, Barg NL, Johnston KH, Schlievert PM, Henrichsen J, Gerlach D et al.: Geographic and temporal distribution and molecular characterization of two highly pathogenic clones of Streptococcus pyogenes expressing allelic variants of pyrogenic exotoxin A (Scarlet fever toxin). J Infect Dis 1993; 167: 337 – 346.en_US
dc.identifier.citedreferenceNelson K, Schlievert PM, Selander RK, Musser JM: Characterization and clonal distribution of four alleles of the speA gene encoding pyrogenic exotoxin A (scarlet fever toxin) in Streptococcus pyogenes. J Exp Med 1991; 174: 1271 – 1274.en_US
dc.identifier.citedreferenceGratz N, Siller M, Schaljo B, Pirzada ZA, Gattermeier I, Vojtek I, Kirschning CJ, Wagner H, Akira S, Charpentier E, Kovarik P: Group A streptococcus activates type I interferon production and MyD88‐dependent signaling without involvement of TLR2, TLR4, and TLR9. J Biol Chem 2008; 283: 19879 – 19887.en_US
dc.identifier.citedreferenceStaali L, Morgelin M, Bjorck L, Tapper H: Streptococcus pyogenes expressing M and M‐like surface proteins are phagocytosed but survive inside human neutrophils. Cell Microbiol 2003; 5: 253 – 265.en_US
dc.identifier.citedreferenceThulin P, Johansson L, Low DE, Gan BS, Kotb M, McGeer A, Norrby‐Teglund A: Viable group A streptococci in macrophages during acute soft tissue infection. PLoS Med 2006; 3: e53.en_US
dc.identifier.citedreferenceNakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K, Hamada S, Yoshimori T: Autophagy defends cells against invading group A Streptococcus. Science 2004; 306: 1037 – 1040.en_US
dc.identifier.citedreferenceOsterlund A, Engstrand L: Intracellular penetration and survival of Streptococcus pyogenes in respiratory epithelial cells in vitro. Acta Otolaryngol 1995; 115: 685 – 688.en_US
dc.identifier.citedreferenceLaPenta D, Rubens C, Chi E, Cleary PP: Group A streptococci efficiently invade human respiratory epithelial cells. Proc Natl Acad Sci U S A 1994; 91: 12115 – 12119.en_US
dc.identifier.citedreferenceGreco R, De Martino L, Donnarumma G, Conte MP, Seganti L, Valenti P: Invasion of cultured human cells by Streptococcus pyogenes. Res Microbiol 1995; 146: 551 – 560.en_US
dc.identifier.citedreferenceSchaefer TM, Fahey JV, Wright JA, Wira CR: Innate immunity in the human female reproductive tract: antiviral response of uterine epithelial cells to the TLR3 agonist poly(I:C). J Immunol 2005; 174: 992 – 1002.en_US
dc.identifier.citedreferenceSchaefer TM, Desouza K, Fahey JV, Beagley KW, Wira CR: Toll‐like receptor (TLR) expression and TLR‐mediated cytokine/chemokine production by human uterine epithelial cells. Immunology 2004; 112: 428 – 436.en_US
dc.identifier.citedreferenceSimhan HN, Caritis SN, Krohn MA, Martinez de Tejada B, Landers DV, Hillier SL: Decreased cervical proinflammatory cytokines permit subsequent upper genital tract infection during pregnancy. Am J Obstet Gynecol 2003; 189: 560 – 567.en_US
dc.identifier.citedreferenceWira CR, Patel MV, Ghosh M, Mukura L, Fahey JV: Innate immunity in the human female reproductive tract: endocrine regulation of endogenous antimicrobial protection against HIV and other sexually transmitted infections. Am J Reprod Immunol 2011; 65: 196 – 211.en_US
dc.identifier.citedreferenceKing AE, Paltoo A, Kelly RW, Sallenave JM, Bocking AD, Challis JR: Expression of natural antimicrobials by human placenta and fetal membranes. Placenta 2007; 28: 161 – 169.en_US
dc.identifier.citedreferenceKing AE, Kelly RW, Sallenave JM, Bocking AD, Challis JR: Innate immune defences in the human uterus during pregnancy. Placenta 2007; 28: 1099 – 1106.en_US
dc.identifier.citedreferenceMoreau T, Baranger K, Dade S, Dallet‐Choisy S, Guyot N, Zani ML: Multifaceted roles of human elafin and secretory leukocyte proteinase inhibitor (SLPI), two serine protease inhibitors of the chelonianin family. Biochimie 2008; 90: 284 – 295.en_US
dc.identifier.citedreferenceJohansson L, Thulin P, Sendi P, Hertzen E, Linder A, Akesson P, Low DE, Agerberth B, Norrby‐Teglund A: Cathelicidin LL‐37 in severe Streptococcus pyogenes soft tissue infections in humans. Infect Immun 2008; 76: 3399 – 3404.en_US
dc.identifier.citedreferenceChamorro CI, Weber G, Gronberg A, Pivarcsi A, Stahle M: The human antimicrobial peptide LL‐37 suppresses apoptosis in keratinocytes. J Invest Dermatol 2009; 129: 937 – 944.en_US
dc.identifier.citedreferenceAderem A, Underhill DM: Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 1999; 17: 593 – 623.en_US
dc.identifier.citedreferenceKeshav S, Chung LP, Gordon S: Macrophage products in inflammation. Diagn Microbiol Infect Dis 1990; 13: 439 – 447.en_US
dc.identifier.citedreferenceNathan CF: Secretory products of macrophages. J Clin Invest 1987; 79: 319 – 326.en_US
dc.identifier.citedreferenceSansonetti P: Phagocytosis of bacterial pathogens: implications in the host response. Semin Immunol 2001; 13: 381 – 390.en_US
dc.identifier.citedreferenceGoldmann O, Rohde M, Chhatwal GS, Medina E: Role of macrophages in host resistance to group A streptococci. Infect Immun 2004; 72: 2956 – 2963.en_US
dc.identifier.citedreferenceMiettinen M, Lehtonen A, Julkunen I, Matikainen S: Lactobacilli and Streptococci activate NF‐kappa B and STAT signaling pathways in human macrophages. J Immunol 2000; 164: 3733 – 3740.en_US
dc.identifier.citedreferenceVeckman V, Miettinen M, Matikainen S, Lande R, Giacomini E, Coccia EM, Julkunen I: Lactobacilli and streptococci induce inflammatory chemokine production in human macrophages that stimulates Th1 cell chemotaxis. J Leukoc Biol 2003; 74: 395 – 402.en_US
dc.identifier.citedreferenceWira CR, Fahey JV, Sentman CL, Pioli PA, Shen L: Innate and adaptive immunity in female genital tract: cellular responses and interactions. Immunol Rev 2005; 206: 306 – 335.en_US
dc.identifier.citedreferenceGivan AL, White HD, Stern JE, Colby E, Gosselin EJ, Guyre PM, Wira CR: Flow cytometric analysis of leukocytes in the human female reproductive tract: comparison of fallopian tube, uterus, cervix, and vagina. Am J Reprod Immunol 1997; 38: 350 – 359.en_US
dc.identifier.citedreferenceSacks GP, Studena K, Sargent K, Redman CW: Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am J Obstet Gynecol 1998; 179: 80 – 86.en_US
dc.identifier.citedreferenceKoumandakis E, Koumandaki I, Kaklamani E, Sparos L, Aravantinos D, Trichopoulos D: Enhanced phagocytosis of mononuclear phagocytes in pregnancy. Br J Obstet Gynaecol 1986; 93: 1150 – 1154.en_US
dc.identifier.citedreferenceShibuya T, Izuchi K, Kuroiwa A, Okabe N, Shirakawa K: Study on nonspecific immunity in pregnant women: increased chemiluminescence response of peripheral blood phagocytes. Am J Reprod Immunol Microbiol 1987; 15: 19 – 23.en_US
dc.identifier.citedreferenceNaccasha N, Gervasi MT, Chaiworapongsa T, Berman S, Yoon BH, Maymon E, Romero R: Phenotypic and metabolic characteristics of monocytes and granulocytes in normal pregnancy and maternal infection. Am J Obstet Gynecol 2001; 185: 1118 – 1123.en_US
dc.identifier.citedreferenceDeLoia JA, Stewart‐Akers AM, Brekosky J, Kubik CJ: Effects of exogenous estrogen on uterine leukocyte recruitment. Fertil Steril 2002; 77: 548 – 554.en_US
dc.identifier.citedreferenceKamat BR, Isaacson PG: The immunocytochemical distribution of leukocytic subpopulations in human endometrium. Am J Pathol 1987; 127: 66 – 73.en_US
dc.identifier.citedreferenceIijima N, Thompson JM, Iwasaki A: Dendritic cells and macrophages in the genitourinary tract. Mucosal Immunol 2008; 1: 451 – 459.en_US
dc.identifier.citedreferenceIijima N, Linehan MM, Zamora M, Butkus D, Dunn R, Kehry MR, Laufer TM, Iwasaki A: Dendritic cells and B cells maximize mucosal Th1 memory response to herpes simplex virus. J Exp Med 2008; 205: 3041 – 3052.en_US
dc.identifier.citedreferenceSteinman RM: The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991; 9: 271 – 296.en_US
dc.identifier.citedreferenceNishioka Y, Nishimura N, Suzuki Y, Sone S: Human monocyte‐derived and CD83(+) blood dendritic cells enhance NK cell‐mediated cytotoxicity. Eur J Immunol 2001; 31: 2633 – 2641.en_US
dc.identifier.citedreferenceOsada T, Nagawa H, Kitayama J, Tsuno NH, Ishihara S, Takamizawa M, Shibata Y: Peripheral blood dendritic cells, but not monocyte‐derived dendritic cells, can augment human NK cell function. Cell Immunol 2001; 213: 14 – 23.en_US
dc.identifier.citedreferenceBradley LM, Harbertson J, Biederman E, Zhang Y, Bradley SM, Linton PJ: Availability of antigen‐presenting cells can determine the extent of CD4 effector expansion and priming for secretion of Th2 cytokines in vivo. Eur J Immunol 2002; 32: 2338 – 2346.en_US
dc.identifier.citedreferenceOchiel DO, Ghosh M, Fahey JV, Guyre PM, Wira CR: Human uterine epithelial cell secretions regulate dendritic cell differentiation and responses to TLR ligands. J Leukoc Biol 2010; 88: 435 – 444.en_US
dc.identifier.citedreferenceCortes G, Wessels MR: Inhibition of dendritic cell maturation by group A Streptococcus. J Infect Dis 2009; 200: 1152 – 1161.en_US
dc.identifier.citedreferenceVoyich JM, Musser JM, DeLeo FR: Streptococcus pyogenes and human neutrophils: a paradigm for evasion of innate host defense by bacterial pathogens. Microbes Infect 2004; 6: 1117 – 1123.en_US
dc.identifier.citedreferenceJi Y, McLandsborough L, Kondagunta A, Cleary PP: C5a peptidase alters clearance and trafficking of group A streptococci by infected mice. Infect Immun 1996; 64: 503 – 510.en_US
dc.identifier.citedreferenceCleary PP, Prahbu U, Dale JB, Wexler DE, Handley J: Streptococcal C5a peptidase is a highly specific endopeptidase. Infect Immun 1992; 60: 5219 – 5223.en_US
dc.identifier.citedreferenceVoyich JM, Sturdevant DE, Braughton KR, Kobayashi SD, Lei B, Virtaneva K, Dorward DW, Musser JM, DeLeo FR: Genome‐wide protective response used by group A Streptococcus to evade destruction by human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A 2003; 100: 1996 – 2001.en_US
dc.identifier.citedreferenceMedina E, Rohde M, Chhatwal GS: Intracellular survival of Streptococcus pyogenes in polymorphonuclear cells results in increased bacterial virulence. Infect Immun 2003; 71: 5376 – 5380.en_US
dc.identifier.citedreferenceAbdeltawab NF, Aziz RK, Kansal R, Rowe SL, Su Y, Gardner L, Brannen C, Nooh MM, Attia RR, Abdelsamed HA, Taylor WL, Lu L, Williams RW, Kotb M: An unbiased systems genetics approach to mapping genetic loci modulating susceptibility to severe streptococcal sepsis. PLoS Pathog 2008; 4: e1000042.en_US
dc.identifier.citedreferenceNooh MM, Nookala S, Kansal R, Kotb M: Individual genetic variations directly effect polarization of cytokine responses to superantigens associated with streptococcal sepsis: implications for customized patient care. J Immunol 2011; 186: 3156 – 3163.en_US
dc.identifier.citedreferenceChatellier S, Ihendyane N, Kansal RG, Khambaty F, Basma H, Norrby‐Teglund A, Low DE, McGeer A, Kotb M: Genetic relatedness and superantigen expression in group A streptococcus serotype M1 isolates from patients with severe and nonsevere invasive diseases. Infect Immun 2000; 68: 3523 – 3534.en_US
dc.identifier.citedreferenceJohnson DR, Wotton JT, Shet A, Kaplan EL: A comparison of group A streptococci from invasive and uncomplicated infections: are virulent clones responsible for serious streptococcal infections? J Infect Dis 2002; 185: 1586 – 1595.en_US
dc.identifier.citedreferenceAziz RK, Kotb M: Rise and persistence of global M1T1 clone of Streptococcus pyogenes. Emerg Infect Dis 2008; 14: 1511 – 1517.en_US
dc.identifier.citedreferenceKansal RG, Datta V, Aziz RK, Abdeltawab NF, Rowe S, Kotb M: Dissection of the molecular basis for hypervirulence of an in vivo‐selected phenotype of the widely disseminated M1T1 strain of group A Streptococcus bacteria. J Infect Dis 2010; 201: 855 – 865.en_US
dc.identifier.citedreferenceBasma H, Norrby‐Teglund A, Guedez Y, McGeer A, Low DE, El‐Ahmedy O, Schwartz B, Kotb M: Risk factors in the pathogenesis of invasive group A streptococcal infections: role of protective humoral immunity. Infect Immun 1999; 67: 1871 – 1877.en_US
dc.identifier.citedreferenceKotb M, Norrby‐Teglund A, McGeer A, El‐Sherbini H, Dorak MT, Khurshid A, Green K, Peeples J, Wade J, Thomson G, Schwartz B, Low DE: An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nat Med 2002; 8: 1398 – 1404.en_US
dc.identifier.citedreferenceKotb M: Bacterial pyrogenic exotoxins as superantigens. Clin Microbiol Rev 1995; 8: 411 – 426.en_US
dc.identifier.citedreferenceNorrby‐Teglund A, Lustig R, Kotb M: Differential induction of Th1 versus Th2 cytokines by group A streptococcal toxic shock syndrome isolates. Infect Immun 1997; 65: 5209 – 5215.en_US
dc.identifier.citedreferenceNorrby‐Teglund A, Chatellier S, Low DE, McGeer A, Green K, Kotb M: Host variation in cytokine responses to superantigens determine the severity of invasive group A streptococcal infection. Eur J Immunol 2000; 30: 3247 – 3255.en_US
dc.identifier.citedreferenceNorrby‐Teglund A, Thulin P, Gan BS, Kotb M, McGeer A, Andersson J, Low DE: Evidence for superantigen involvement in severe group a streptococcal tissue infections. J Infect Dis 2001; 184: 853 – 860.en_US
dc.identifier.citedreferenceNorrby SR, Norrby‐Teglund A: Infections due to group A streptococcus: new concepts and potential treatment strategies. Ann Acad Med Singapore 1997; 26: 691 – 693.en_US
dc.identifier.citedreferenceNorrby‐Teglund A, Ihendyane N, Darenberg J: Intravenous immunoglobulin adjunctive therapy in sepsis, with special emphasis on severe invasive group A streptococcal infections. Scand J Infect Dis 2003; 35: 683 – 689.en_US
dc.identifier.citedreferenceMedina E, Lengeling A: Genetic regulation of host responses to group A streptococcus in mice. Brief Funct Genomic Proteomic 2005; 4: 248 – 257.en_US
dc.identifier.citedreferenceDavis SM, Clark EA, Nelson LT, Silver RM: The association of innate immune response gene polymorphisms and puerperal group A streptococcal sepsis. Am J Obstet Gynecol 2010; 202: 308.e1 – 308.e8.en_US
dc.identifier.citedreferenceGaunt G, Ramin K: Immunological tolerance of the human fetus. Am J Perinatol 2001; 18: 299 – 312.en_US
dc.identifier.citedreferenceSacks G, Sargent I, Redman C: An innate view of human pregnancy. Immunol Today 1999; 20: 114 – 118.en_US
dc.identifier.citedreferenceJin LP, Fan DX, Li DJ: Regulation of costimulatory signal in maternal‐fetal immune tolerance. Am J Reprod Immunol 2011; 66: 76 – 83.en_US
dc.identifier.citedreferenceVeenstra van Nieuwenhoven AL, Heineman MJ, Faas MM: The immunology of successful pregnancy. Hum Reprod Update 2003; 9: 347 – 357.en_US
dc.identifier.citedreferenceMor G, Cardenas I, Abrahams V, Guller S: Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci 2011; 1221: 80 – 87.en_US
dc.identifier.citedreferenceKvirkvelia N, Vojnovic I, Warner TD, Athie‐Morales V, Free P, Rayment N, Chain BM, Rademacher TW, Lund T, Roitt IM, Delves PJ: Placentally derived prostaglandin E2 acts via the EP4 receptor to inhibit IL‐2‐dependent proliferation of CTLL‐2 T cells. Clin Exp Immunol 2002; 127: 263 – 269.en_US
dc.identifier.citedreferenceParhar RS, Lala PK: Prostaglandin E2‐mediated inactivation of various killer lineage cells by tumor‐bearing host macrophages. J Leukoc Biol 1988; 44: 474 – 484.en_US
dc.identifier.citedreferenceScodras JM, Parhar RS, Kennedy TG, Lala PK: Prostaglandin‐mediated inactivation of natural killer cells in the murine decidua. Cell Immunol 1990; 127: 352 – 367.en_US
dc.identifier.citedreferenceTawfik OW, Hunt JS, Wood GW: Implication of prostaglandin E2 in soluble factor‐mediated immune suppression by murine decidual cells. Am J Reprod Immunol Microbiol 1986; 12: 111 – 117.en_US
dc.identifier.citedreferenceHertelendy F, Woods R, Jaffe BM: Prostaglandin E levels in peripheral blood during labor. Prostaglandins 1973; 3: 223 – 227.en_US
dc.identifier.citedreferenceRicciotti E, FitzGerald GA: Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 2011; 31: 986 – 1000.en_US
dc.identifier.citedreferenceLiu W, Dubinett S, Patterson SL, Kelly KA: COX‐2 inhibition affects growth rate of Chlamydia muridarum within epithelial cells. Microbes Infect 2006; 8: 478 – 486.en_US
dc.identifier.citedreferenceOlson DM, Ammann C: Role of the prostaglandins in labour and prostaglandin receptor inhibitors in the prevention of preterm labour. Front Biosci 2007; 12: 1329 – 1343.en_US
dc.identifier.citedreferenceHoedemaker M, Lund LA, Wagner WC: Influence of arachidonic acid metabolites and steroids on function of bovine polymorphonuclear neutrophils. Am J Vet Res 1992; 53: 1534 – 1539.en_US
dc.identifier.citedreferenceFabricius D, Neubauer M, Mandel B, Schutz C, Viardot A, Vollmer A, Jahrsdorfer B, Debatin KM: Prostaglandin E2 inhibits IFN‐alpha secretion and Th1 costimulation by human plasmacytoid dendritic cells via E‐prostanoid 2 and E‐prostanoid 4 receptor engagement. J Immunol 2010; 184: 677 – 684.en_US
dc.identifier.citedreferenceKalinski P, Hilkens CM, Snijders A, Snijdewint FG, Kapsenberg ML: IL‐12‐deficient dendritic cells, generated in the presence of pro:staglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J Immunol 1997; 159: 28 – 35.en_US
dc.identifier.citedreferenceHarizi H, Juzan M, Pitard V, Moreau JF, Gualde N: Cyclooxygenase‐2‐issued prostaglandin e(2) enhances the production of endogenous IL‐10, which down‐regulates dendritic cell functions. J Immunol 2002; 168: 2255 – 2263.en_US
dc.identifier.citedreferenceBallinger MN, Aronoff DM, McMillan TR, Cooke KR, Olkiewicz K, Toews GB, Peters‐Golden M, Moore BB: Critical role of prostaglandin E2 overproduction in impaired pulmonary host response following bone marrow transplantation. J Immunol 2006; 177: 5499 – 5508.en_US
dc.identifier.citedreferenceChaimoff C, Malachi T, Halbrecht I: Prostaglandin E2 and cyclic nucleotides in plasma and urine of colonic cancer patients. J Cancer Res Clin Oncol 1985; 110: 153 – 156.en_US
dc.identifier.citedreferenceFraifeld V, Kaplanski J, Kukulansky T, Globerson A: Increased prostaglandin E2 production by concanavalin A‐stimulated splenocytes of old mice. Gerontology 1995; 41: 129 – 133.en_US
dc.identifier.citedreferenceRamis I, Rosello‐Catafau J, Gomez G, Zabay JM, Fernandez Cruz E, Gelpi E: Cyclooxygenase and lipoxygenase arachidonic acid metabolism by monocytes from human immune deficiency virus‐infected drug users. J Chromatogr 1991; 557: 507 – 513.en_US
dc.identifier.citedreferenceAnstead GM, Zhang Q, Melby PC: Malnutrition promotes prostaglandin over leukotriene production and dysregulates eicosanoid‐cytokine crosstalk in activated resident macrophages. Prostaglandins Leukot Essent Fatty Acids 2009; 81: 41 – 51.en_US
dc.identifier.citedreferenceel‐Sharabasy MM, el‐Naggar MM: Prostaglandin E2 in renal transplant recipients. Int Urol Nephrol 1992; 24: 447 – 451.en_US
dc.identifier.citedreferenceCayeux SJ, Beverley PC, Schulz R, Dorken B: Elevated plasma prostaglandin E2 levels found in 14 patients undergoing autologous bone marrow or stem cell transplantation. Bone Marrow Transplant 1993; 12: 603 – 608.en_US
dc.identifier.citedreferenceBernheim HA: Is prostaglandin E2 involved in the pathogenesis of fever? Effects of interleukin‐1 on the release of prostaglandins. Yale J Biol Med 1986; 59: 151 – 158.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.