Show simple item record

Microcephaly, intellectual impairment, bilateral vesicoureteral reflux, distichiasis, and glomuvenous malformations associated with a 16q24.3 contiguous gene deletion and a Glomulin mutation

dc.contributor.authorButler, Matthew Gregoryen_US
dc.contributor.authorDagenais, Susan L.en_US
dc.contributor.authorGarcia‐perez, José L.en_US
dc.contributor.authorBrouillard, Pascalen_US
dc.contributor.authorVikkula, Miikkaen_US
dc.contributor.authorStrouse, Peter J.en_US
dc.contributor.authorInnis, Jeffrey W.en_US
dc.contributor.authorGlover, Thomas W.en_US
dc.date.accessioned2012-04-04T18:44:09Z
dc.date.available2013-06-11T19:15:47Zen_US
dc.date.issued2012-04en_US
dc.identifier.citationButler, Matthew G.; Dagenais, Susan L.; Garcia‐perez, José L. ; Brouillard, Pascal; Vikkula, Miikka; Strouse, Peter; Innis, Jeffrey W.; Glover, Thomas W. (2012). "Microcephaly, intellectual impairment, bilateral vesicoureteral reflux, distichiasis, and glomuvenous malformations associated with a 16q24.3 contiguous gene deletion and a Glomulin mutation ." American Journal of Medical Genetics Part A 158A(4): 839-849. <http://hdl.handle.net/2027.42/90599>en_US
dc.identifier.issn1552-4825en_US
dc.identifier.issn1552-4833en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90599
dc.description.abstractTwo hereditary syndromes, lymphedema‐distichiasis (LD) syndrome and blepharo‐chelio‐dontic (BCD) syndrome include the aberrant growth of eyelashes from the meibomian glands, known as distichiasis. LD is an autosomal dominant syndrome primarily characterized by distichiasis and the onset of lymphedema usually during puberty. Mutations in the forkhead transcription factor FOXC2 are the only known cause of LD. BCD syndrome consists of autosomal dominant abnormalities of the eyelid, lip, and teeth, and the etiology remains unknown. In this report, we describe a proband that presented with distichiasis, microcephaly, bilateral grade IV vesicoureteral reflux requiring ureteral re‐implantation, mild intellectual impairment and apparent glomuvenous malformations (GVM). Distichiasis was present in three generations of the proband's maternal side of the family. The GVMs were severe in the proband, and maternal family members exhibited lower extremity varicosities of variable degree. A GLMN (glomulin) gene mutation was identified in the proband that accounts for the observed GVMs; no other family member could be tested. TIE2 sequencing revealed no mutations. In the proband, an additional submicroscopic 265 kb contiguous gene deletion was identified in 16q24.3, located 609 kb distal to the FOXC2 locus, which was inherited from the proband's mother. The deletion includes the C16ORF95 , FBXO31 , MAP1LC3B , and ZCCHC14 loci and 115 kb of a gene desert distal to FOXC2 and FOXL1 . Thus, it is likely that the microcephaly, distichiasis, vesicoureteral, and intellectual impairment in this family may be caused by the deletion of one or more of these genes and/or deletion of distant cis ‐regulatory elements of FOXC2 expression. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherVascular Malformationen_US
dc.subject.otherFBXO31en_US
dc.subject.otherMAP1LC3Ben_US
dc.subject.otherZCCHC14en_US
dc.subject.otherVenous Malformationen_US
dc.subject.otherGlomuvenous Malformationen_US
dc.subject.otherFOXC2en_US
dc.subject.otherDistichiasisen_US
dc.subject.otherGLMNen_US
dc.titleMicrocephaly, intellectual impairment, bilateral vesicoureteral reflux, distichiasis, and glomuvenous malformations associated with a 16q24.3 contiguous gene deletion and a Glomulin mutationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Human Genetics, 1241 E. Catherine Street, 4909 Buhl Box 0618, University of Michigan Medical School, Ann Arbor, MI 48109‐5618.en_US
dc.contributor.affiliationumDepartment of Radiology, University of Michigan Medical School, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Human Genetics, University of Michigan Medical School, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherProgram in Genomics of Differentiation, NICHD/NIH, Building 6B, Room 322, 6 Center Drive, Bethesda, MD 20892.en_US
dc.contributor.affiliationotherLaboratory of Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgiumen_US
dc.contributor.affiliationotherDepartment of Human DNA Variability, GENYO (Pfizer‐University of Granada‐Andalusian Government Center for Genomics and Oncological Research), Granada, Spainen_US
dc.identifier.pmid22407726en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90599/1/35229_ftp.pdf
dc.identifier.doi10.1002/ajmg.a.35229en_US
dc.identifier.sourceAmerican Journal of Medical Genetics Part Aen_US
dc.identifier.citedreferenceMorrish TA, Gilbert N, Myers JS, Vincent BJ, Stamato TD, Taccioli GE, Batzer MA, Moran JV. 2002. DNA repair mediated by endonuclease‐independent LINE‐1 retrotransposition. Nat Genet 31: 159 – 165.en_US
dc.identifier.citedreferenceCallen DF, Eyre H, Lane S, Shen Y, Hansmann I, Spinner N, Zackai E, McDonald‐McGinn D, Schuffenhauer S, Wauters J., et al. 1993. High resolution mapping of interstitial long arm deletions of chromosome 16: Relationship to phenotype. J Med Genet 30: 828 – 832.en_US
dc.identifier.citedreferenceCann GM, Guignabert C, Ying L, Deshpande N, Bekker JM, Wang L, Zhou B, Rabinovitch M. 2008. Developmental expression of LC3alpha and beta: Absence of fibronectin or autophagy phenotype in LC3beta knockout mice. Dev Dyn 237: 187 – 195.en_US
dc.identifier.citedreferenceCiulla TA, Sklar RM, Hauser SL. 1988. A simple method for DNA purification from peripheral blood. Anal Biochem 174: 485 – 488.en_US
dc.identifier.citedreferenceDagenais SL, Hartsough RL, Erickson RP, Witte MH, Butler MG, Glover TW. 2004. Foxc2 is expressed in developing lymphatic vessels and other tissues associated with lymphedema‐distichiasis syndrome. Gene Expr Patterns 4: 611 – 619.en_US
dc.identifier.citedreferenceErickson RP, Hudgins L, Stone JF, Schmidt S, Wilke C, Glover TW. 1995. A “balanced” Y;16 translocation associated with Turner‐like neonatal lymphedema suggests the location of a potential anti‐Turner gene on the Y chromosome. Cytogenet Cell Genet 71: 163 – 167.en_US
dc.identifier.citedreferenceErickson RP, Dagenais SL, Caulder MS, Downs CA, Herman G, Jones MC, Kerstjens‐Frederikse WS, Lidral AC, McDonald M, Nelson CC, Witte M, Blover TW. 2001. Clinical heterogeneity in lymphoedema‐distichiasis with FOXC2 truncating mutations. J Med Genet 38: 761 – 766.en_US
dc.identifier.citedreferenceFang J, Dagenais SL, Erickson RP, Arlt MF, Glynn MW, Gorski JL, Seaver LH, Glover TW. 2000. Mutations in FOXC2 (MFH‐1), a forkhead family transcription factor, are responsible for the hereditary lymphedema‐distichiasis syndrome. Am J Hum Genet 67: 1382 – 1388.en_US
dc.identifier.citedreferenceFinegold DN, Kimak MA, Lawrence EC, Levinson KL, Cherniske EM, Pober BR, Dunlap JW, Ferrell RE. 2001. Truncating mutations in FOXC2 cause multiple lymphedema syndromes. Hum Mol Genet 10: 1185 – 1189.en_US
dc.identifier.citedreferenceGilbert J. 2001. Establishment of permanent cell lines by Epstein–Barr virus transformation. Curr Protoc Hum Genet Appendix 3:Appendix 3H.en_US
dc.identifier.citedreferenceGorlin RJ, Zellweger H, Curtis MW, Wiedemann HR, Warburg M, Majewski F, Gillessen‐Kaesbach G, Prahl‐Andersen B, Zackai E. 1996. Blepharo‐cheilo‐dontic (BCD) syndrome. Am J Med Genet 65: 109 – 112.en_US
dc.identifier.citedreferenceHara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki‐Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N. 2006. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441: 885 – 889.en_US
dc.identifier.citedreferenceHastings PJ, Ira G, Lupski JR. 2009. A microhomology‐mediated break‐induced replication model for the origin of human copy number variation. PLoS Genet 5: e1000327.en_US
dc.identifier.citedreferenceHe H, Dang Y, Dai F, Guo Z, Wu J, She X, Pei Y, Chen Y, Ling W, Wu C, Zhao S, Liu JO, Yu L. 2003. Post‐translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem 278: 29278 – 29287.en_US
dc.identifier.citedreferenceIida K, Koseki H, Kakinuma H, Kato N, Mizutani‐Koseki Y, Ohuchi H, Yoshioka H, Noji S, Kawamura K, Kataoka Y, Ueno F, Taniguchi M, Yoshida N, Sugiyama T, Miura N. 1997. Essential roles of the winged helix transcription factor MFH‐1 in aortic arch patterning and skeletogenesis. Development 124: 4627 – 4638.en_US
dc.identifier.citedreferenceKaestner KH, Bleckmann SC, Monaghan AP, Schlondorff J, Mincheva A, Lichter P, Schutz G. 1996. Clustered arrangement of winged helix genes fkh‐6 and MFH‐1: Possible implications for mesoderm development. Development 122: 1751 – 1758.en_US
dc.identifier.citedreferenceKarolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Lu YT, Roskin KM, Schwartz M, Sugnet CW, Thomas DJ, Weber RJ, Haussler D, Kent WJ. 2003. The UCSC genome browser database. Nucleic Acids Res 31: 51 – 54.en_US
dc.identifier.citedreferenceKomatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K. 2006. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441: 880 – 884.en_US
dc.identifier.citedreferenceKumar R, Neilsen PM, Crawford J, McKirdy R, Lee J, Powell JA, Saif Z, Martin JM, Lombaerts M, Cornelisse CJ, Cleton‐Jansen AM, Callen DF. 2005. FBXO31 is the chromosome 16q24.3 senescence gene, a candidate breast tumor suppressor, and a component of an SCF complex. Cancer Res 65: 11304 – 11313.en_US
dc.identifier.citedreferenceLieber MR, Ma Y, Pannicke U, Schwarz K. 2003. Mechanism and regulation of human non‐homologous DNA end‐joining. Nat Rev Mol Cell Biol 4: 712 – 720.en_US
dc.identifier.citedreferenceMellor RH, Brice G, Stanton AW, French J, Smith A, Jeffery S, Levick JR, Burnand KG, Mortimer PS. 2007. Mutations in FOXC2 are strongly associated with primary valve failure in veins of the lower limb. Circulation 115: 1912 – 1920.en_US
dc.identifier.citedreferenceMulliken JB. 1988. Vascular birthmarks: Hemangiomas and malformations. Philadelphia, PA: Saunders. p 483.en_US
dc.identifier.citedreferenceNg MY, Andrew T, Spector TD, Jeffery S. 2005. Linkage to the FOXC2 region of chromosome 16 for varicose veins in otherwise healthy, unselected sibling pairs. J Med Genet 42: 235 – 239.en_US
dc.identifier.citedreferenceNobrega MA, Ovcharenko I, Afzal V, Rubin EM. 2003. Scanning human gene deserts for long‐range enhancers. Science 302: 413.en_US
dc.identifier.citedreferencePressman CL, Chen H, Johnson RL. 2000. LMX1B, a LIM homeodomain class transcription factor, is necessary for normal development of multiple tissues in the anterior segment of the murine eye. Genesis 26: 15 – 125.en_US
dc.identifier.citedreferenceRozen S, Skaletsky H. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132: 365 – 386.en_US
dc.identifier.citedreferenceSantra MK, Wajapeyee N, Green MR. 2009. F‐box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage. Nature 459: 722 – 725.en_US
dc.identifier.citedreferenceSherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. 2001. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res 29: 308 – 311.en_US
dc.identifier.citedreferenceShintani T, Klionsky DJ. 2004. Autophagy in health and disease: A double‐edged sword. Science 306: 990 – 995.en_US
dc.identifier.citedreferenceSholto‐Douglas‐Vernon C, Bell R, Brice G, Mansour S, Sarfarazi M, Child AH, Smith A, Mellor R, Burnand K, Mortimer P, Jeffery S. 2005. Lymphoedema‐distichiasis and FOX C2: Unreported mutations, de novo mutation estimate, families without coding mutations. Hum Genet 117: 238 – 242.en_US
dc.identifier.citedreferenceStankiewicz P, Sen P, Bhatt SS, Storer M, Xia Z, Bejjani BA, Ou Z, Wiszniewska J, Driscoll DJ, Maisenbacher MK, Bolivar J, Bauer M, Zackai EH, McDonald‐McGinn D, Nowaczyk MM, Murray M, Hustead V, Mascotti K, Schultz R, Hallam L, McRae D, Nicholson AG, Newbury R, Durham‐O'Donnell J, Knight G, Kini U, Shaikh TH, Martin V, Tyreman M, Simonic I, Willatt L, Paterson J, Mehta S, Rajan D, Fitzgerald T, Gribble S, Prigmore E, Patel A, Shaffer LG, Carter NP, Cheung SW, Langston C, Shaw‐Smith C. 2009. Genomic and genic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am J Hum Genet 84: 780 – 791.en_US
dc.identifier.citedreferenceVikkula M, Boon LM, Carraway KL III, Calvert JT, Diamonti AJ, Goumnerov B, Pasyk KA, Marchuk DA, Warman ML, Cantley LC, Mulliken JB, Olsen BR. 1996. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 87: 1181 – 1190.en_US
dc.identifier.citedreferenceWang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, Hakonarson H, Bucan M. 2007. PennCNV: An integrated hidden Markov model designed for high‐resolution copy number variation detection in whole‐genome SNP genotyping data. Genome Res 17: 1665 – 1674.en_US
dc.identifier.citedreferenceWei W, Gilbert N, Ooi SL, Lawler JF, Ostertag EM, Kazazian HH, Boeke JD, Moran JV. 2001. Human L1 retrotransposition: Cis preference versus trans complementation. Mol Cell Biol 21: 1429 – 1439.en_US
dc.identifier.citedreferenceWilke CM, Hall BK, Hoge A, Paradee W, Smith DI, Glover TW. 1996. FRA3B extends over a broad region and contains a spontaneous HPV16 integration site: Direct evidence for the coincidence of viral integration sites and fragile sites. Hum Mol Genet 5: 187 – 195.en_US
dc.identifier.citedreferenceWinnier GE, Hargett L, Hogan BL. 1997. The winged helix transcription factor MFH1 is required for proliferation and patterning of paraxial mesoderm in the mouse embryo. Genes Dev 11: 926 – 940.en_US
dc.identifier.citedreferenceWouters V, Limaye N, Uebelhoer M, Irrthum A, Boon LM, Mulliken JB, Enjolras O, Baselga E, Berg J, Dompmartin A, Ivarsson SA, Kangesu L, Lacassie Y, Murphy J, Teebi AS, Penington A, Rieu P, Vikkula M. 2010. Hereditary cutaneomucosal venous malformations are caused by TIE2 mutations with widely variable hyper‐phosphorylating effects. Eur J Hum Genet 18: 414 – 420.en_US
dc.identifier.citedreferenceBell R, Brice G, Child AH, Murday VA, Mansour S, Sandy CJ, Collin JR, Brady AF, Callen DF, Burnand K, Mortimer P, Jeffery S. 2001. Analysis of lymphoedema‐distichiasis families for FOXC2 mutations reveals small insertions and deletions throughout the gene. Hum Genet 108: 546 – 551.en_US
dc.identifier.citedreferenceBoon LM, Mulliken JB, Enjolras O, Vikkula M. 2004. Glomuvenous malformation (glomangioma) and venous malformation: Distinct clinicopathologic and genetic entities. Arch Dermatol 140: 971 – 976.en_US
dc.identifier.citedreferenceBrice G, Mansour S, Bell R, Collin JR, Child AH, Brady AF, Sarfarazi M, Burnand KG, Jeffery S, Mortimer P, Murday VA. 2002. Analysis of the phenotypic abnormalities in lymphoedema‐distichiasis syndrome in 74 patients with FOXC2 mutations or linkage to 16q24. J Med Genet 39: 478 – 483.en_US
dc.identifier.citedreferenceBrooks BP, Dagenais SL, Nelson CC, Glynn MW, Caulder MS, Downs CA, Glover TW. 2003. Mutation of the FOXC2 gene in familial distichiasis. J Aapos 7: 354 – 357.en_US
dc.identifier.citedreferenceBrouillard P, Vikkula M. 2007. Genetic causes of vascular malformations. Hum Mol Genet 16: R140 – R149.en_US
dc.identifier.citedreferenceBrouillard P, Boon LM, Mulliken JB, Enjolras O, Ghassibe M, Warman ML, Tan OT, Olsen BR, Vikkula M. 2002. Mutations in a novel factor, glomulin, are responsible for glomuvenous malformations (“glomangiomas”). Am J Hum Genet 70: 866 – 874.en_US
dc.identifier.citedreferenceBrouillard P, Ghassibe M, Penington A, Boon LM, Dompmartin A, Temple IK, Cordisco M, Adams D, Piette F, Harper JI, Sved S, Boralevi F, Taieb A, Danda S, Baselga E, Enjolras O, Mulliken JB, Vikkula M. 2005. Four common glomulin mutations cause two thirds of glomuvenous malformations (“familial glomangiomas”): Evidence for a founder effect. J Med Genet 42: e13.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.