Show simple item record

Hedgehog‐EGFR cooperation response genes determine the oncogenic phenotype of basal cell carcinoma and tumour‐initiating pancreatic cancer cells

dc.contributor.authorEberl, Markusen_US
dc.contributor.authorKlingler, Stefanen_US
dc.contributor.authorMangelberger, Dorisen_US
dc.contributor.authorLoipetzberger, Andreaen_US
dc.contributor.authorDamhofer, Heleneen_US
dc.contributor.authorZoidl, Kerstinen_US
dc.contributor.authorSchnidar, Haralden_US
dc.contributor.authorHache, Hendriken_US
dc.contributor.authorBauer, Hans‐christianen_US
dc.contributor.authorSolca, Flavioen_US
dc.contributor.authorHauser‐kronberger, Corneliaen_US
dc.contributor.authorErmilov, Alexandre N.en_US
dc.contributor.authorVerhaegen, Monique E.en_US
dc.contributor.authorBichakjian, Christopher K.en_US
dc.contributor.authorDlugosz, Andrzej A.en_US
dc.contributor.authorNietfeld, Wilfrieden_US
dc.contributor.authorSibilia, Mariaen_US
dc.contributor.authorLehrach, Hansen_US
dc.contributor.authorWierling, Christophen_US
dc.contributor.authorAberger, Fritzen_US
dc.date.accessioned2012-04-04T18:44:20Z
dc.date.available2013-05-01T17:24:44Zen_US
dc.date.issued2012-03en_US
dc.identifier.citationEberl, Markus; Klingler, Stefan; Mangelberger, Doris; Loipetzberger, Andrea; Damhofer, Helene; Zoidl, Kerstin; Schnidar, Harald; Hache, Hendrik; Bauer, Hans‐christian ; Solca, Flavio; Hauser‐kronberger, Cornelia ; Ermilov, Alexandre N.; Verhaegen, Monique E.; Bichakjian, Christopher K.; Dlugosz, Andrzej A.; Nietfeld, Wilfried; Sibilia, Maria; Lehrach, Hans; Wierling, Christoph; Aberger, Fritz (2012). "Hedgehogâ EGFR cooperation response genes determine the oncogenic phenotype of basal cell carcinoma and tumourâ initiating pancreatic cancer cells ." EMBO Molecular Medicine 4(3): 218-233. <http://hdl.handle.net/2027.42/90605>en_US
dc.identifier.issn1757-4676en_US
dc.identifier.issn1757-4684en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90605
dc.description.abstractInhibition of Hedgehog (HH)/GLI signalling in cancer is a promising therapeutic approach. Interactions between HH/GLI and other oncogenic pathways affect the strength and tumourigenicity of HH/GLI. Cooperation of HH/GLI with epidermal growth factor receptor (EGFR) signalling promotes transformation and cancer cell proliferation in vitro . However, the in vivo relevance of HH‐EGFR signal integration and the critical downstream mediators are largely undefined. In this report we show that genetic and pharmacologic inhibition of EGFR signalling reduces tumour growth in mouse models of HH/GLI driven basal cell carcinoma (BCC). We describe HH‐EGFR cooperation response genes including SOX2, SOX9, JUN, CXCR4 and FGF19 that are synergistically activated by HH‐EGFR signal integration and required for in vivo growth of BCC cells and tumour‐initiating pancreatic cancer cells. The data validate EGFR signalling as drug target in HH/GLI driven cancers and shed light on the molecular processes controlled by HH‐EGFR signal cooperation, providing new therapeutic strategies based on combined targeting of HH‐EGFR signalling and selected downstream target genes.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherEpidermal Growth Factor Receptoren_US
dc.subject.otherCanceren_US
dc.subject.otherHedgehog Signallingen_US
dc.subject.otherSignal Transductionen_US
dc.titleHedgehog‐EGFR cooperation response genes determine the oncogenic phenotype of basal cell carcinoma and tumour‐initiating pancreatic cancer cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Dermatology, University of Michigan, MI, USAen_US
dc.contributor.affiliationumDepartments of Dermatology and Cell & Developmental Biology, University of Michigan, MI, USAen_US
dc.contributor.affiliationotherBoehringer Ingelheim RCV GmbH & Co KG, Vienna, Austriaen_US
dc.contributor.affiliationotherDepartment of Organismic Biology, University of Salzburg, Salzburg, Austriaen_US
dc.contributor.affiliationotherDepartment of Vertebrate Genomics, Max‐Planck Institute for Molecular Genetics, Berlin, Germanyen_US
dc.contributor.affiliationotherDepartment of Molecular Biology, University of Salzburg, Salzburg, Austriaen_US
dc.contributor.affiliationotherTel: +43 662 8044 5792; Fax: +43 662 8044 183en_US
dc.contributor.affiliationotherCold Spring Harbor Laboratory, New York, NY, USAen_US
dc.contributor.affiliationotherInstitute of Cancer Research, Medical University of Vienna, Vienna, Austriaen_US
dc.contributor.affiliationotherDepartment of Pathology, Paracelsus Medical University Salzburg, Salzburg, Austriaen_US
dc.identifier.pmid22294553en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90605/1/218_ftp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90605/2/emmm_201100201_sm_suppdata.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90605/3/emmm_201100201_sm_Review_Process_File.pdf
dc.identifier.doi10.1002/emmm.201100201en_US
dc.identifier.sourceEMBO Molecular Medicineen_US
dc.identifier.citedreferenceRudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, Fu L, Holcomb T, Stinson J, Gould SE, Coleman B, et al ( 2009 ) Treatment of medulloblastoma with Hedgehog pathway inhibitor GDC‐0449. N Engl J Med 361: 1173 ‐ 1178en_US
dc.identifier.citedreferenceKasper M, Regl G, Frischauf AM, Aberger F ( 2006a ) GLI transcription factors: mediators of oncogenic Hedgehog signalling. Eur J Cancer 42: 437 ‐ 445en_US
dc.identifier.citedreferenceKasper M, Schnidar H, Neill GW, Hanneder M, Klingler S, Blaas L, Schmid C, Hauser‐Kronberger C, Regl G, Philpott MP, et al ( 2006b ) Selective modulation of Hedgehog/GLI target gene expression by epidermal growth factor signaling in human keratinocytes. Mol Cell Biol 26: 6283 ‐ 6298en_US
dc.identifier.citedreferenceLaner‐Plamberger S, Kaser A, Paulischta M, Hauser‐Kronberger C, Eichberger T, Frischauf AM ( 2009 ) Cooperation between GLI and JUN enhances transcription of JUN and selected GLI target genes. Oncogene 28: 1639 ‐ 1651en_US
dc.identifier.citedreferenceLi C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM ( 2007 ) Identification of pancreatic cancer stem cells. Cancer Res 67: 1030 ‐ 1037en_US
dc.identifier.citedreferenceLi D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac LR, Padera RF, Shapiro GI, Baum A, Himmelsbach F, et al ( 2008 ) BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27: 4702 ‐ 4711en_US
dc.identifier.citedreferenceMao J, Ligon KL, Rakhlin EY, Thayer SP, Bronson RT, Rowitch D, McMahon AP ( 2006 ) A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res 66: 10171 ‐ 10178en_US
dc.identifier.citedreferenceMcMurray HR, Sampson ER, Compitello G, Kinsey C, Newman L, Smith B, Chen SR, Klebanov L, Salzman P, Yakovlev A, et al ( 2008 ) Synergistic response to oncogenic mutations defines gene class critical to cancer phenotype. Nature 453: 1112 ‐ 1116en_US
dc.identifier.citedreferenceMimeault M, Moore E, Moniaux N, Henichart JP, Depreux P, Lin MF, Batra SK ( 2006 ) Cytotoxic effects induced by a combination of cyclopamine and gefitinib, the selective Hedgehog and epidermal growth factor receptor signaling inhibitors, in prostate cancer cells. Int J Cancer 118: 1022 ‐ 1031en_US
dc.identifier.citedreferenceMueller MT, Hermann PC, Witthauer J, Rubio‐Viqueira B, Leicht SF, Huber S, Ellwart JW, Mustafa M, Bartenstein P, D'Haese JG, et al ( 2009 ) Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology 137: 1102 ‐ 1113en_US
dc.identifier.citedreferenceNatarajan A, Wagner B, Sibilia M ( 2007 ) The EGF receptor is required for efficient liver regeneration. Proc Natl Acad Sci USA 104: 17081 ‐ 17086en_US
dc.identifier.citedreferenceNg JM, Curran T ( 2011 ) The Hedgehog's tale: developing strategies for targeting cancer. Nat Rev Cancer 11: 493 ‐ 501en_US
dc.identifier.citedreferenceNolan‐Stevaux O, Lau J, Truitt ML, Chu GC, Hebrok M, Fernandez‐Zapico ME, Hanahan D ( 2009 ) GLI1 is regulated through Smoothened‐independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev 23: 24 ‐ 36en_US
dc.identifier.citedreferenceOrimo A, Gupta PB, Sgroi DC, Arenzana‐Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA ( 2005 ) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF‐1/CXCL12 secretion. Cell 121: 335 ‐ 348en_US
dc.identifier.citedreferencePalma V, Lim DA, Dahmane N, Sanchez P, Brionne TC, Herzberg CD, Gitton Y, Carleton A, Alvarez‐Buylla A, Ruiz i Altaba A ( 2005 ) Sonic Hedgehog controls stem cell behavior in the postnatal and adult brain. Development 132: 335 ‐ 344en_US
dc.identifier.citedreferencePalma V, Ruiz i Altaba A ( 2004 ) Hedgehog‐GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex. Development 131: 337 ‐ 345en_US
dc.identifier.citedreferencePasca di Magliano M, Sekine S, Ermilov A, Ferris J, Dlugosz AA, Hebrok M ( 2006 ) Hedgehog/Ras interactions regulate early stages of pancreatic cancer. Genes Dev 20: 3161 ‐ 3173en_US
dc.identifier.citedreferencePeacock CD, Wang Q, Gesell GS, Corcoran‐Schwartz IM, Jones E, Kim J, Devereux WL, Rhodes JT, Huff CA, Beachy PA, et al ( 2007 ) Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 104: 4048 ‐ 4053en_US
dc.identifier.citedreferencePo A, Ferretti E, Miele E, De Smaele E, Paganelli A, Canettieri G, Coni S, Di Marcotullio L, Biffoni M, Massimi L, et al ( 2010 ) Hedgehog controls neural stem cells through p53‐independent regulation of Nanog. EMBO J 29: 2646 ‐ 2658en_US
dc.identifier.citedreferenceRamirez A, Page A, Gandarillas A, Zanet J, Pibre S, Vidal M, Tusell L, Genesca A, Whitaker DA, Melton DW, et al ( 2004 ) A keratin K5Cre transgenic line appropriate for tissue‐specific or generalized Cre‐mediated recombination. Genesis 39: 52 ‐ 57en_US
dc.identifier.citedreferenceRegl G, Neill GW, Eichberger T, Kasper M, Ikram MS, Koller J, Hintner H, Quinn AG, Frischauf AM, Aberger F ( 2002 ) Human GLI2 and GLI1 are part of a positive feedback mechanism in Basal cell carcinoma. Oncogene 21: 5529 ‐ 5539en_US
dc.identifier.citedreferenceRiobo NA, Haines GM, Emerson CP Jr ( 2006a ) Protein kinase C‐delta and mitogen‐activated protein/extracellular signal‐regulated kinase‐1 control GLI activation in Hedgehog signaling. Cancer Res 66: 839 ‐ 845en_US
dc.identifier.citedreferenceRiobo NA, Lu K, Ai X, Haines GM, Emerson CP Jr ( 2006b ) Phosphoinositide 3‐kinase and Akt are essential for Sonic Hedgehog signaling. Proc Natl Acad Sci USA 103: 4505 ‐ 4510en_US
dc.identifier.citedreferenceRohatgi R, Scott MP ( 2007 ) Patching the gaps in Hedgehog signalling. Nat Cell Biol 9: 1005 ‐ 1009en_US
dc.identifier.citedreferenceRoth FP, Hughes JD, Estep PW, Church GM ( 1998 ) Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole‐genome mRNA quantitation. Nat Biotechnol 16: 939 ‐ 945en_US
dc.identifier.citedreferenceRuiz i Altaba A, Mas C, Stecca B ( 2007 ) The Gli code: an information nexus regulating cell fate, stemness and cancer. Trends Cell Biol 17: 438 ‐ 447en_US
dc.identifier.citedreferenceSchnidar H, Eberl M, Klingler S, Mangelberger D, Kasper M, Hauser‐Kronberger C, Regl G, Kroismayr R, Moriggl R, Sibilia M, et al ( 2009 ) Epidermal growth factor receptor signaling synergizes with Hedgehog/GLI in oncogenic transformation via activation of the MEK/ERK/JUN pathway. Cancer Res 69: 1284 ‐ 1292en_US
dc.identifier.citedreferenceSkvara H, Kalthoff F, Meingassner JG, Wolff‐Winiski B, Aschauer H, Kelleher JF, Wu X, Pan S, Mickel L, Schuster C, et al ( 2011 ) Topical treatment of Basal cell carcinomas in nevoid Basal cell carcinoma syndrome with a smoothened inhibitor. J Invest Dermatol 131: 1735 ‐ 1744en_US
dc.identifier.citedreferenceSo PL, Langston AW, Daniallinia N, Hebert JL, Fujimoto MA, Khaimskiy Y, Aszterbaum M, Epstein EH Jr ( 2006 ) Long‐term establishment, characterization and manipulation of cell lines from mouse basal cell carcinoma tumors. Exp Dermatol 15: 742 ‐ 750en_US
dc.identifier.citedreferenceStecca B, Mas C, Clement V, Zbinden M, Correa R, Piguet V, Beermann F, Ruiz IAA ( 2007 ) Melanomas require HEDGEHOG‐GLI signaling regulated by interactions between GLI1 and the RAS‐MEK/AKT pathways. Proc Natl Acad Sci USA 104: 5895 ‐ 5900en_US
dc.identifier.citedreferenceStecca B, Ruiz IAA ( 2010 ) Context‐dependent regulation of the GLI code in cancer by HEDGEHOG and non‐HEDGEHOG signals. J Mol Cell Biol 2: 84 ‐ 95en_US
dc.identifier.citedreferenceTakanaga H, Tsuchida‐Straeten N, Nishide K, Watanabe A, Aburatani H, Kondo T ( 2009 ) Gli2 is a novel regulator of sox2 expression in telencephalic neuroepithelial cells. Stem Cells 27: 165 ‐ 174en_US
dc.identifier.citedreferenceTeglund S, Toftgard R ( 2010 ) Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta 1805: 181 ‐ 208en_US
dc.identifier.citedreferenceVarnat F, Duquet A, Malerba M, Zbinden M, Mas C, Gervaz P, Ruiz i Altaba A ( 2009 ) Human colon cancer epithelial cells harbour active HEDGEHOG‐GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med 1: 338 ‐ 351en_US
dc.identifier.citedreferenceVarnat F, Siegl‐Cachedenier I, Malerba M, Gervaz P, Ruiz i Altaba A ( 2010 ) Loss of WNT‐TCF addiction and enhancement of HH‐GLI1 signalling define the metastatic transition of human colon carcinomas. EMBO Mol Med 2: 440 ‐ 457en_US
dc.identifier.citedreferenceVidal VP, Chaboissier MC, Lutzkendorf S, Cotsarelis G, Mill P, Hui CC, Ortonne N, Ortonne JP, Schedl A ( 2005 ) Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr Biol 15: 1340 ‐ 1351en_US
dc.identifier.citedreferenceVon Hoff DD, LoRusso PM, Rudin CM, Reddy JC, Yauch RL, Tibes R, Weiss GJ, Borad MJ, Hann CL, Brahmer JR, et al ( 2009 ) Inhibition of the Hedgehog pathway in advanced basal‐cell carcinoma. N Engl J Med 361: 1164 ‐ 1172en_US
dc.identifier.citedreferenceWang GY, Wang J, Mancianti ML, Epstein EH Jr ( 2011 ) Basal cell carcinomas arise from hair follicle stem cells in Ptch1(+/‐) mice. Cancer Cell 19: 114 ‐ 124en_US
dc.identifier.citedreferenceWong SY, Reiter JF ( 2011 ) Wounding mobilizes hair follicle stem cells to form tumors. Proc Natl Acad Sci USA 108: 4093 ‐ 4098en_US
dc.identifier.citedreferenceXie J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C, Bonifas JM, Lam CW, Hynes M, Goddard A, et al ( 1998 ) Activating smoothened mutations in sporadic basal‐cell carcinoma. Nature 391: 90 ‐ 92en_US
dc.identifier.citedreferenceXie MH, Holcomb I, Deuel B, Dowd P, Huang A, Vagts A, Foster J, Liang J, Brush J, Gu Q, et al ( 1999 ) FGF‐19, a novel fibroblast growth factor with unique specificity for FGFR4. Cytokine 11: 729 ‐ 735en_US
dc.identifier.citedreferenceYamanaka S ( 2007 ) Strategies and new developments in the generation of patient‐specific pluripotent stem cells. Cell Stem Cell 1: 39 ‐ 49en_US
dc.identifier.citedreferenceYauch RL, Dijkgraaf GJ, Alicke B, Januario T, Ahn CP, Holcomb T, Pujara K, Stinson J, Callahan CA, Tang T, et al ( 2009 ) Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 326: 572 ‐ 574en_US
dc.identifier.citedreferenceYauch RL, Gould SE, Scales SJ, Tang T, Tian H, Ahn CP, Marshall D, Fu L, Januario T, Kallop D, et al ( 2008 ) A paracrine requirement for Hedgehog signalling in cancer. Nature 455: 406 ‐ 410en_US
dc.identifier.citedreferenceYoon JW, Kita Y, Frank DJ, Majewski RR, Konicek BA, Nobrega MA, Jacob H, Walterhouse D, Iannaccone P ( 2002 ) Gene expression profiling leads to identification of GLI1‐binding elements in target genes and a role for multiple downstream pathways in GLI1‐induced cell transformation. J Biol Chem 277: 5548 ‐ 5555en_US
dc.identifier.citedreferenceZbinden M, Duquet A, Lorente‐Trigos A, Ngwabyt SN, Borges I, Ruiz I, Altaba A ( 2010 ) NANOG regulates glioma stem cells and is essential in vivo acting in a cross‐functional network with GLI1 and p53. EMBO J 29: 2659 ‐ 2674en_US
dc.identifier.citedreferenceZhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J, Kwon HY, Kim J, Chute JP, Rizzieri D, et al ( 2009 ) Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458: 776 ‐ 779en_US
dc.identifier.citedreferenceAszterbaum M, Epstein J, Oro A, Douglas V, LeBoit PE, Scott MP, Epstein EH Jr ( 1999 ) Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nat Med 5: 1285 ‐ 1291en_US
dc.identifier.citedreferenceBrewster R, Mullor JL, Ruiz I, Altaba A ( 2000 ) Gli2 functions in FGF signaling during antero‐posterior patterning. Development 127: 4395 ‐ 4405en_US
dc.identifier.citedreferenceBruns CJ, Harbison MT, Kuniyasu H, Eue I, Fidler IJ ( 1999 ) In vivo selection and characterization of metastatic variants from human pancreatic adenocarcinoma by using orthotopic implantation in nude mice. Neoplasia 1: 50 ‐ 62en_US
dc.identifier.citedreferenceBuonamici S, Williams J, Morrissey M, Wang A, Guo R, Vattay A, Hsiao K, Yuan J, Green J, Ospina B, et al ( 2010 ) Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci Transl Med 2: 51ra70en_US
dc.identifier.citedreferenceClement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A ( 2007 ) HEDGEHOG‐GLI1 signaling regulates human glioma growth, cancer stem cell self‐renewal, and tumorigenicity. Curr Biol 17: 165 ‐ 172en_US
dc.identifier.citedreferenceDennler S, Andre J, Verrecchia F, Mauviel A ( 2009 ) Cloning of the human GLI2 Promoter: transcriptional activation by transforming growth factor‐beta via SMAD3/beta‐catenin cooperation. J Biol Chem 284: 31523 ‐ 31531en_US
dc.identifier.citedreferenceDierks C, Beigi R, Guo GR, Zirlik K, Stegert MR, Manley P, Trussell C, Schmitt‐Graeff A, Landwerlin K, Veelken H, et al ( 2008 ) Expansion of Bcr‐Abl‐positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 14: 238 ‐ 249en_US
dc.identifier.citedreferenceGrachtchouk M, Pero J, Yang SH, Ermilov AN, Michael LE, Wang A, Wilbert D, Patel RM, Ferris J, Diener J, et al ( 2011 ) Basal cell carcinomas in mice arise from hair follicle stem cells and multiple epithelial progenitor populations. J Clin Invest 121: 1768 ‐ 1781en_US
dc.identifier.citedreferenceHanahan D, Weinberg RA ( 2000 ) The hallmarks of cancer. Cell 100: 57 ‐ 70en_US
dc.identifier.citedreferenceHermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C ( 2007 ) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1: 313 ‐ 323en_US
dc.identifier.citedreferenceIndra AK, Warot X, Brocard J, Bornert JM, Xiao JH, Chambon P, Metzger D ( 1999 ) Temporally‐controlled site‐specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen‐inducible Cre‐ER(T) and Cre‐ER(T2) recombinases. Nucleic Acids Res 27: 4324 ‐ 4327en_US
dc.identifier.citedreferenceJeong J, Mao J, Tenzen T, Kottmann AH, McMahon AP ( 2004 ) Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia. Genes Dev 18: 937 ‐ 951en_US
dc.identifier.citedreferenceJiang J, Hui CC ( 2008 ) Hedgehog signaling in development and cancer. Dev Cell 15: 801 ‐ 812en_US
dc.identifier.citedreferenceKasper M, Jaks V, Are A, Bergstrom A, Schwager A, Barker N, Toftgard R ( 2011 ) Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes. Proc Natl Acad Sci USA 108: 4099 ‐ 4104en_US
dc.identifier.citedreferenceKasper M, Regl G, Eichberger T, Frischauf AM, Aberger F ( 2007 ) Efficient manipulation of Hedgehog/GLI signaling using retroviral expression systems. Methods Mol Biol 397: 67 ‐ 78en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.