Show simple item record

Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide

dc.contributor.authorDunbar, Johnen_US
dc.contributor.authorEichorst, Stephanie A.en_US
dc.contributor.authorGallegos‐graves, La Verneen_US
dc.contributor.authorSilva, Shannonen_US
dc.contributor.authorXie, Garyen_US
dc.contributor.authorHengartner, N. W.en_US
dc.contributor.authorEvans, R. Daviden_US
dc.contributor.authorHungate, Bruce A.en_US
dc.contributor.authorJackson, Robert B.en_US
dc.contributor.authorMegonigal, J. Patricken_US
dc.contributor.authorSchadt, Christopher W.en_US
dc.contributor.authorVilgalys, Rytasen_US
dc.contributor.authorZak, Donald R.en_US
dc.contributor.authorKuske, Cheryl R.en_US
dc.date.accessioned2012-05-21T15:48:05Z
dc.date.available2013-07-01T14:33:05Zen_US
dc.date.issued2012-05en_US
dc.identifier.citationDunbar, John; Eichorst, Stephanie A.; Gallegos‐graves, La Verne ; Silva, Shannon; Xie, Gary; Hengartner, N. W.; Evans, R. David; Hungate, Bruce A.; Jackson, Robert B.; Megonigal, J. Patrick; Schadt, Christopher W.; Vilgalys, Rytas; Zak, Donald R.; Kuske, Cheryl R. (2012). "Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide." Environmental Microbiology 14(5). <http://hdl.handle.net/2027.42/91149>en_US
dc.identifier.issn1462-2912en_US
dc.identifier.issn1462-2920en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91149
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.titleCommon bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxideen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherBiosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USAen_US
dc.contributor.affiliationotherSchool of Natural Resources & Environmenten_US
dc.contributor.affiliationotherBioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USAen_US
dc.contributor.affiliationotherComputer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USAen_US
dc.contributor.affiliationotherSchool of Biological Sciences, Washington State University, Pullman, WA 99164, USAen_US
dc.contributor.affiliationotherDepartment of Biological Sciencesen_US
dc.contributor.affiliationotherMerriam‐Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USAen_US
dc.contributor.affiliationotherDepartment of Biologyen_US
dc.contributor.affiliationotherNicholas School of the Environment, Duke University, Durham, NC 27708, USAen_US
dc.contributor.affiliationotherSmithsonian Environmental Research Center, Washington, DC 20013, USAen_US
dc.identifier.pmid22264231en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91149/1/j.1462-2920.2011.02695.x.pdf
dc.identifier.doi10.1111/j.1462-2920.2011.02695.xen_US
dc.identifier.sourceEnvironmental Microbiologyen_US
dc.identifier.citedreferenceMontealegre, C.M., van Kessel, C., and Russelle, M.P. ( 2002 ) Changes in microbial activity and composition in a pasture ecosystem exposed to elevated atmospheric carbon dioxide. Plant Soil 243: 197 – 207.en_US
dc.identifier.citedreferenceLane, D. ( 1991 ) 16S/23S Rrna Sequencing. In Nucleic Acid Techniques in Bacterial Systematics. E. Stackebrandt, and M. Goodfellow (eds). New York, NY, USA: John Wiley & Sons, pp. 115 – 175.en_US
dc.identifier.citedreferenceLarson, J.L., Zak, D.R., and Sinsabaugh, R.L. ( 2002 ) Etracellular enzyme activity beneath temperate trees growing under elevated carbon dioxide and ozone. Soil Sci Soc Am J 66: 1848 – 1856.en_US
dc.identifier.citedreferenceLauber, C.L., Hamady, M., Knight, R., and Fierer, N. ( 2009 ) Pyrosequencing‐based assessent of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75: 5111 – 5120.en_US
dc.identifier.citedreferenceLesaulnier, S., Papamichail, D., McCorkle, S., Ollivier, B., Skiena, S., Taghavi, S., et al. ( 2008 ) Elevated atmospheric CO 2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10: 926 – 941.en_US
dc.identifier.citedreferenceLi, Z.A., Zou, B., Xia, H.P., Ding, Y.Z., Tan, W.N., and Fu, S.L. ( 2008 ) Role of low‐molecule‐weight organic acids and their salts in regulating soil pH(‐1). Pedosphere 18: 137 – 148.en_US
dc.identifier.citedreferenceLichter, J., Billings, S.A., Ziegler, S., Gaindh, D., Ryals, R., Finzi, A.C., et al. ( 2008 ) Soil carbon sequestration in a pine forest after 9 years of atmospheric CO 2 enrichment. Glob Change Biol 15: 2910 – 2922.en_US
dc.identifier.citedreferenceLipson, D.A., Schadt, C.W., and Schmidt, S.K. ( 2002 ) Changes in microbial community structure and function in an alpine dry meadow following spring snow melt. Microb Ecol 43: 307 – 314.en_US
dc.identifier.citedreferenceLipson, D.A., Blair, M., Barron‐Gafford, G., Brieve, K., and Murthy, R. ( 2006 ) Relationships between microbial community structure and soil processes under elevated atmospheric carbon dioxide. Microb Ecol 51: 302 – 314.en_US
dc.identifier.citedreferenceLudwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, et al. ( 2004 ) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363 – 1371.en_US
dc.identifier.citedreferenceLukac, M., Lagomarsino, A., Moscatelli, M.C., Angelis, P.D., Cotrufo, M.F., and Godbold, D.L. ( 2009 ) Forest soil carbon cycle under elevated CO 2 – a case of increased throughput? Forestry 82: 75 – 86.en_US
dc.identifier.citedreferenceMatamala, R., Gonzàlez‐Meler, M.A., Jastrow, J.D., and Schlesinger, W.H. ( 2003 ) Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302: 1385 – 1387.en_US
dc.identifier.citedreferenceMoscatelli, M.C., Lagomarsino, A., De Angelis, P., and Grego, S. ( 2005 ) Seasonality of soil biological properties in a poplar plantation growing under elevated atmospheric CO 2. Appl Soil Ecol 30: 162 – 173.en_US
dc.identifier.citedreferenceNiboyet, A., Barthes, L., Hungate, B.A., Roux, X.L., Bloor, J.M.G., Ambroise, A., et al. ( 2010 ) Responses of soil nitrogen cycling to the interactive effects of elevated CO 2 and inorganic N supply. Plant Soil 327: 35 – 47.en_US
dc.identifier.citedreferenceNiklaus, P.A., Alphei, D., Ebersberger, D., Kampichler, C., Kandeler, E., and Tscherko, D. ( 2003 ) Six years of in situ CO 2 enrichment evoke changes in soil structure and soil biota of nutrient‐poor grassland. Glob Change Biol 9: 585 – 600.en_US
dc.identifier.citedreferenceNorby, R.J., Ledford, J., Reilly, C.D., Miller, N.E., and O'Neill, E.G. ( 2004 ) Fine‐root production dominates response of a deciduous forest to atmospheric CO 2 enrichment. PNAS 101: 9689 – 9693.en_US
dc.identifier.citedreferenceNowak, R.S., Zitzer, S.F., BAbcock, D., Smith‐Longozo, V., Charlet, T.N., Coleman, J.S., et al. ( 2004 ) Elevated atmospheric CO 2 does not conserve water in the Mojave desert. Ecology 85: 93 – 99.en_US
dc.identifier.citedreferenceOksanen, J., Kindt, R., Legendre, P., O'Hara, B., Simpson, G.L., Solymos, P., et al. ( 2009 ) vegan: Community Ecology Package.en_US
dc.identifier.citedreferenceParsons, W.F., Bockheim, J.G., and Lindroth, R.L. ( 2008 ) Independent, interactive and species‐specific responses to leaf litter decomposition to elevated CO 2 and O 3 in a Northern hardwood forest. Ecosystems 11: 505 – 519.en_US
dc.identifier.citedreferencePaterson, E., Osler, G., Dawson, L.A., Gebbing, T., Sim, A., and Ord, B. ( 2008 ) Labile and recalcitrant plant fractions are utilised by distinct microbial communities in soil: independent of the presence of roots and mycorrhizal fungi. Soil Biol Biochem 40: 1103 – 1113.en_US
dc.identifier.citedreferencePendall, E., Rustad, L., and Schimel, J. ( 2008 ) Towards a predictive understanding of belowground process responses to climate change: have we moved any closer. Funct Ecol 22: 937 – 940.en_US
dc.identifier.citedreferencePhillips, R.L., Zak, D.R., Homes, W.E., and White, D.C. ( 2002 ) Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 131: 236 – 244.en_US
dc.identifier.citedreferencePhillips, R.P., Berhardt, E.S., and Schlesinger, W.H. ( 2009 ) Elevated CO 2 increases root exudation from loblolly pine ( Pinus taeda ) seedlings as an N‐mediated response. Tree Physiol 29: 1513 – 1523.en_US
dc.identifier.citedreferencePruesse, E., Quast, C., Knittel, K., Fuchs, B., Ludwig, W., Peplies, J., and Glockner, F. ( 2007 ) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35: 7188 – 7196.en_US
dc.identifier.citedreferenceRandlett, D.L., Pregitzer, K.S., and Curtis, P.S. ( 1996 ) Elevated atmospheric carbon dioxide and leaf litter chemistry: influences on microbial respiration and net nitrogen mineralization. Soil Sci Soc Am J 60: 1571 – 1577.en_US
dc.identifier.citedreferenceRukshana, F., Butterly, C.R., Baldock, J.A., and Tang, C. ( 2011 ) Model organic compounds differ in their effects on pH changes of two soils differing in initial pH. Biol Fert Soils 47: 51 – 62.en_US
dc.identifier.citedreferenceRustad, L.E., Campell, J.L., Marion, G.M., Norby, R.J., Mitchell, M.J., Hartley, A.E., et al. ( 2001 ) A meta‐analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126: 543 – 562.en_US
dc.identifier.citedreferenceSait, M., Davis, K.E.R., and Janssen, P.H. ( 2006 ) Effect of pH on isolation of distribution of members of subdivision 1 of the Phylum Acidobacteria occurring in soil. Appl Environ Microbiol 72: 1852 – 1857.en_US
dc.identifier.citedreferenceSmith, S.D., Huxman, T.E., Zitzer, S.F., Charlet, T.N., Housman, D.C., Coleman, J.S., et al. ( 2000 ) Elevated CO 2 increases productivity and invasive species success in an arid ecosystem. Nature 408: 79 – 82.en_US
dc.identifier.citedreferenceTalhelm, A.F., Pregitzer, K.S., and Zak, D.R. ( 2009 ) Species‐specific responses to atmospheric carbon dioxide and tropospheric ozone mediate changes in soil carbon. Ecol Lett 12: 1219 – 1228.en_US
dc.identifier.citedreferenceTeam, R.D.C. ( 2009 ) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.en_US
dc.identifier.citedreferenceTreseder, K.K. ( 2004 ) A meta‐analysis of mycorrhizal responses to nitrogen, phosphorous, and atmospheric CO 2 in field studies. New Phytol 164: 347 – 355.en_US
dc.identifier.citedreferenceUpchurch, R., Chi, C.Y., Everett, K., Dyszynski, G., Coleman, D.C., and Whitman, W.B. ( 2008 ) Differences in the composition and diversity of bacterial communities from agricultural and forest soils. Soil Biol Biochem 40: 1294 – 1305.en_US
dc.identifier.citedreferenceWang, Q., Garrity, G.M., Tiedje, J.M., and Cole, J.R. ( 2007 ) Naive Bayesian Classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261 – 5271.en_US
dc.identifier.citedreferenceWeatherly, H.E., Zitzer, S.F., Coleman, J.S., and Arnone, J.A., III ( 2003 ) In situ litter decomposition and litter quality in a Mojave Desert ecosystem: effects of elevated atmospheric CO 2 and interannual climate variability. Glob Change Biol 9: 1223 – 1233.en_US
dc.identifier.citedreferenceYoav, B., and Yekutieli, D. ( 2001 ) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29: 1165 – 1188.en_US
dc.identifier.citedreferenceZak, D.R., Pregitzer, K.S., Curtis, P.S., Teeri, J.A., Fogel, R., and Randlett, D.L. ( 1993 ) Elevated atmospheric CO 2 and feedback between carbon and nitrogen cycles. Plant Soil 151: 105 – 117.en_US
dc.identifier.citedreferenceZak, D.R., Pregitzer, K.S., King, J.S., and Holmes, W.E. ( 2000 ) Elevated atmospheric CO 2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytol 147: 201 – 222.en_US
dc.identifier.citedreferenceAinsworth, E.A., and Long, S.P. ( 2005 ) What have we learned from 15 years of free‐air CO 2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO 2. New Phytol 165: 351 – 372.en_US
dc.identifier.citedreferenceAinsworth, E.A., and Rogers, A. ( 2007 ) The response of photosynthesis and stomata conductance to rising CO 2: mechanisms and environmental interactions. Plant Cell Environ 30: 258 – 270.en_US
dc.identifier.citedreferenceBarekzai, A., and Mengel, K. ( 1992 ) Effect of microbial decomposition of mature leaves on soil pH. J Plant Nutr Soil Sci 156: 93 – 94.en_US
dc.identifier.citedreferenceBlagodatskaya, E., Blagodatsky, S., Dorodnikov, M., and Kuzyakov, Y. ( 2010 ) Elevated atmospheric CO 2 increases microbial growth rates in soil: results of three CO 2 enrichment experiments. Glob Change Biol 16: 836 – 848.en_US
dc.identifier.citedreferenceBloor, J.M.G., Niboyet, A., Leadley, P.W., and Barthes, L. ( 2009 ) CO 2 and inorganic N supply modify competition for N between co‐occurring grass plants, tree seedlings and soil microorganisms. Soil Biol Biochem 41: 544 – 552.en_US
dc.identifier.citedreferenceCarney, K.M., Hungate, B.A., Drake, B.G., and Megonigal, J.P. ( 2007 ) Altered soil microbial community at elevated CO 2 leads to loss of soil carbon. PNAS 104: 4990 – 4995.en_US
dc.identifier.citedreferenceCastro, H.F., Classen, A.T., Austin, E.E., Norby, R.J., and Schadt, C.W. ( 2010 ) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76: 999 – 1007.en_US
dc.identifier.citedreferenceCheng, W.X. ( 1999 ) Rhizosphere feedbacks in elevated CO 2. Tree Physiol 19: 313 – 320.en_US
dc.identifier.citedreferenceChung, H., Zak, D.R., and Lilleskov, E.A. ( 2005 ) Fungal community composition and metabolism under elevated CO 2 and O3. Oecologia 147: 143 – 154.en_US
dc.identifier.citedreferenceChung, H., Zak, D.R., Reich, P.B., and Ellsworth, D.S. ( 2007 ) Plant species richness elevated CO 2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Glob Change Biol 13: 1 – 10.en_US
dc.identifier.citedreferenceCole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., et al. ( 2009 ) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37 (Database issue): D141 – D145.en_US
dc.identifier.citedreferenceCotrufo, M.F., Ineson, P., and Rowland, A.P. ( 1994 ) Decomposition of tree leaf litters grown under elevated CO 2: effect of litter quality. Plant Soil 163: 121 – 130.en_US
dc.identifier.citedreferenceCouteaux, M.‐M., Bottner, P., and Berg, B. ( 1995 ) Litter decomposition, climate and litter quality. Trends Ecol Evol 10: 62 – 66.en_US
dc.identifier.citedreferenceDenef, K., Bubenheim, H., Lenhart, K., Vermeulen, J., Cleemput, O.V., Boeckx, P., and Muller, C. ( 2007 ) Community shifts and carbon translocation within metabolically‐active rhizosphere microorganisms in grasslands under elevated CO 2. Biogeosciences 4: 769 – 779.en_US
dc.identifier.citedreferenceDrigo, B., van Veen, J.A., and Kowalchuk, G.A. ( 2009 ) Specific rhizosphere bacterial and fungal groups respond differently to elevated atmospheric CO 2. ISME J 3: 1204 – 1217.en_US
dc.identifier.citedreferenceDrissner, D., Blum, H., Tscherko, D., and Kandeler, E. ( 2007 ) Nine years of enriched CO 2 changes the function and structural diversity of soil microorganisms in a grassland. Eur J Soil Sci 58: 260 – 269.en_US
dc.identifier.citedreferenceDunbar, J., Valdez, Y., and Beck, N. ( 2006 ) DHS NBFAC Final Technical Progress Report: nucleic acids extraction using novel PCR inhibitor removal reagents. Los Alamos National Laboratory Unclassified Document 11‐11573.en_US
dc.identifier.citedreferenceEbersberger, D., Wermbter, N., Niklaus, P.A., and Kandeler, E. ( 2004 ) Effects of long term CO 2 enrichment on microbial community structure in calcareous grassland. Plant Soil 264: 313 – 323.en_US
dc.identifier.citedreferenceEichorst, S.A., Breznak, J.A., and Schmidt, T.M. ( 2007 ) Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl Environ Microbiol 73: 2708 – 2717.en_US
dc.identifier.citedreferenceEngelbrektson, A., Kunin, V., Wrighton, K.C., Zvenigorodsky, N., Chen, F., Ochman, H., and Hugenholtz, P. ( 2010 ) Experimental factors affecting PCR based estimates of microbial species richness and evenness. ISME J 4: 642 – 647.en_US
dc.identifier.citedreferenceFierer, N., Bradford, M.A., and Jackson, R.B. ( 2007 ) Toward an ecological classification of soil bacteria. Ecology 88: 1354 – 1364.en_US
dc.identifier.citedreferenceFinzi, A.C., Norby, R.J., Calfapietra, C., Gallet‐Budynek, A., Gielen, B., Holmes, W.E., et al. ( 2007 ) Increases in nitrogen uptake rather than nitrogen‐use efficiency support higher rates of temperate forest productivity under elevated CO 2. PNAS 104: 14014 – 14019.en_US
dc.identifier.citedreferenceGarten, C.T., Classen, A.T., and Norby, R.J. ( 2009 ) Soil moisture surpasses elevated CO 2 and temperature as a control on soil carbon dynamics in a multi‐factor climate change experiment. Plant Soil 319: 85 – 94.en_US
dc.identifier.citedreferenceGe, Y., Chen, C., Xu, Z., Oren, R., and He, J.‐Z. ( 2010 ) The spatial factor, rather than elevated CO 2, controls the soil bacterial community in a temperate forest ecosystem. Appl Environ Microbiol 76: 7429 – 7436.en_US
dc.identifier.citedreferenceGill, R.A., Polley, H.W., Johnson, H.B., Anderson, L.J., Maherali, H., and Jackson, R.B. ( 2002 ) Nonlinear grassland responses to past and future atmospheric CO 2. Nature 417: 279 – 282.en_US
dc.identifier.citedreferenceGodbold, D.L., Hoosbeek, M.R., Lukac, M., Cotrufo, M.F., Janssens, I.A., Ceulemans, R., et al. ( 2006 ) Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281: 15 – 24.en_US
dc.identifier.citedreferenceHaase, S., Neumann, G., Kania, A., Kuzyakov, Y., Roemheld, V., and Kandeler, E. ( 2007 ) Elevation of atmospheric CO 2 and N‐nutritional status modify nodulation, nodule‐carbon supply, and root exudation of Phaseolus vulgaris L. Soil Biol Biochem 39: 2208 – 2221.en_US
dc.identifier.citedreferenceHall, M.C., Stiling, P., Hungate, B.A., Drake, B.G., and Hunter, M.D. ( 2005 ) Effects of elevated CO 2 and herbivore damage on litter quality in a scrub oak ecosystem. J Chem Ecol 31: 2343 – 2356.en_US
dc.identifier.citedreferenceHamady, M., Lozupone, C., and Knight, R. ( 2010 ) Fast UniFrac: facilitating high‐throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4: 17 – 27.en_US
dc.identifier.citedreferenceHartman, W.H., Richardson, C.J., Vilgalys, R., and Bruland, G.L. ( 2008 ) Environmental and anthropogenic controls over bacterial communities in wetland soils. Proc Natl Acad Sci USA 105: 17842 – 17847.en_US
dc.identifier.citedreferenceHeath, J., Ayres, E., Possell, M., Bardgett, R.D., Black, H.I.J., Grant, H., et al. ( 2005 ) Rising atmospheric CO 2 reduces sequestration of root‐derived soil carbon. Science 309: 1711 – 1713.en_US
dc.identifier.citedreferenceHoosbeek, M.R., and Scarascia‐Mugnozza, G.E. ( 2009 ) Increased litter build up and soil organic matter stabilization in a poplar plantation after 6 years of atmospheric CO 2 enrichment (FACE): final results of POP‐EuroFACE compared to other forest FACE experiments. Ecosystems 12: 220 – 238.en_US
dc.identifier.citedreferenceHousman, D.C., Namburg, E., Huxman, T.E., Charlet, T.N., Nowak, R.S., and Smith, S.D. ( 2006 ) Increases in desert shrub productivity under elevated carbon dioxide vary with water availability. Ecosystems 9: 374 – 385.en_US
dc.identifier.citedreferenceHuber, T., Faulkner, G., and Hugenholtz, P. ( 2004 ) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 2317 – 2319.en_US
dc.identifier.citedreferenceHungate, B.A., Canadell, H., Zhong, H., Chapin, F.S., III, and Holland, E.A. ( 1994 ) Elevated atmospheric CO 2 increases microbial nitrogen‐demand, but plants outcompete microbes for inorganic N. Bulletin of the Ecol Soc America. United States: 101.en_US
dc.identifier.citedreferenceHungate, B.A., Canadell, J., and Chapin, F.S. ( 1996 ) Plant species mediate changes in soil microbial N in response to elevated CO 2. Ecology 77: 2505 – 2515.en_US
dc.identifier.citedreferenceIngelog, T., and Nohrstedt, H.O. ( 1993 ) Ammonia formation and soil pH increase caused by decomposition fruitbodies of macrofungi. Oecologia 93: 449 – 451.en_US
dc.identifier.citedreferenceIversen, C.M., Ledford, J., and Norby, R.J. ( 2008 ) CO 2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. New Phytol 179: 837 – 847.en_US
dc.identifier.citedreferenceIversen, I. ( 2010 ) Digging deeper: fine‐root responses to rising atmospheric CO 2 concentration in forested ecosystems. New Phytol 186: 346 – 357.en_US
dc.identifier.citedreferenceJones, R.T., Robeson, M.S., Lauber, C.L., Hamady, M., Knight, R., and Fierer, N. ( 2009 ) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3: 442 – 453.en_US
dc.identifier.citedreferenceKandeler, E., Mosier, A.R., Morgan, J.A., Milchunas, D.G., King, J.Y., Rudolph, S., and Tscherko, D. ( 2006 ) Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in a semi‐arid grassland. Soil Biol Biochem 38: 2448 – 2460.en_US
dc.identifier.citedreferenceKarnosky, D.F. ( 2003 ) Impacts of elevated atmospheric CO 2 on forest trees and forest ecosystems: knowledge gaps. Environ Int 29: 161 – 169.en_US
dc.identifier.citedreferenceKelly, J.J., Bansal, A., Winkleman, J., Janus, L.R., Hell, S., Wencel, M., et al. ( 2010 ) Alteration of microbial communities colonizing leaf litter in a temperate woodland stream by growth of trees under conditions of elevated atmospheric CO 2. Appl Environ Microbiol 76: 4950 – 4959.en_US
dc.identifier.citedreferenceKing, J.S., Pregitzer, K.S., Zak, D.R., Sober, J., Isebrands, J.G., Dickson, R.E., et al. ( 2001 ) Fine‐root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO 2 and tropospheric O 3. Oecologia 128: 237 – 250.en_US
dc.identifier.citedreferenceKretzschmar, R.M., Hafner, H., Bationo, A., and Marschner, H. ( 1991 ) Long‐ and short‐term effects of crop residues on aluminium toxicity, phosphorus availability and growth of pearl millet in an acid sandy soil. Plant Soil 136: 215 – 223.en_US
dc.identifier.citedreferenceKunin, V., Engelbrektson, A., Ochman, H., and Hugenholtz, P. ( 2010 ) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12: 118 – 123.en_US
dc.identifier.citedreferenceKuske, C.R., Barns, S.M., Grow, C.C., Merrill, L., and Dunbar, J. ( 2006 ) Environmental Survey for four pathogenic bacteria and closely related species using phylogenetic and functional genes. J Forensic Sci 51: 548 – 558.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.